Bioaccessibility of trace elements and Fe and Al endogenic nanoparticles in farmed insects: Pursuing quality sustainable food.

Food Chem

Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain. Electronic address:

Published: November 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study investigated the in vitro bioaccessibility of aluminum, copper, iron, manganese, lead, selenium, and zinc in three important species of farmed insects: the yellow mealworm (Tenebrio molitor), the house cricket (Acheta domesticus) and the migratory locust (Locusta migratoria). Results show that all three insect species constitute excellent sources of essential elements (Fe, Cu and Zn) for the human diet, contributing to the recommended dietary allowance, i.e., 10%, 50%, and 92%, respectively. A higher accumulation of Se (≥1.4 mg Se/kg) was observed with increasing exposure concentration in A. domesticus, showing the possibility of using insects as a supplements for this element. The presence of Al and Fe nanoparticles was confirmed in all three species using single particle-inductively coupled plasma-mass spectrometry and transmission electron microscopy. The results also indicate that Fe bioaccessibility declines with increasing Fe-nanoparticle concentration. These findings contribute to increase the nutritional and toxicological insights of farmed insects.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2024.140229DOI Listing

Publication Analysis

Top Keywords

farmed insects
12
three species
8
bioaccessibility trace
4
trace elements
4
elements endogenic
4
endogenic nanoparticles
4
nanoparticles farmed
4
insects
4
insects pursuing
4
pursuing quality
4

Similar Publications

Engineering resistance genes against tomato brown rugose fruit virus.

Sci China Life Sci

September 2025

MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.

Tomato brown rugose fruit virus (ToBRFV) overcomes all known tomato resistance genes, including the durable Tm-2, posing a serious threat to global tomato production. Here, we employed in vitro random mutagenesis to evolve the Tm-2 leucine-rich repeat (LRR) domain and screened ∼8,000 variants for gain-of-function mutants capable of recognizing the ToBRFV movement protein (MP) and triggering hypersensitive cell death. We identified five such mutants.

View Article and Find Full Text PDF

Trophic guilds of cichlid species in a floodplain river.

J Fish Biol

September 2025

Department of Fisheries and Aquatic Sciences, Cross River University of Technology, PMB 102 Obubra Campus, Calabar, Nigeria.

Floodplains support a diverse cichlid community, yet the trophic ecology of these species is not well understood. This study investigated the dietary niches and trophic guilds of cichlid species in the Cross River floodplain. A total of 480 fish samples from eight cichlid species were collected from three locations (Itu, Obubra, Ikom) over 6 months (October 2019-March 2020).

View Article and Find Full Text PDF

The ability of parasitoid wasps to precisely locate hosts in complex environments is a key factor in suppressing pest populations. Chemical communication plays an essential role in mediating insect behaviors such as locating food sources, hosts, and mates. Odorant receptors (ORs) are the key connection between external odors and olfactory nerves.

View Article and Find Full Text PDF

Molecular Mechanisms Underlying Parasitoid-Derived Host Manipulation Strategies.

Annu Rev Entomol

September 2025

2Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China; email:

Parasitoid wasps are a diverse group of insects with a unique parasitic lifestyle that allows them to spend their lives closely interacting with their insect hosts, facilitated by parasitic effectors, including venom, polydnaviruses, and teratocytes. These effectors manipulate various aspects of insect host biology to increase the survival of the parasitoids' offspring. During the last two decades, omics and functional studies have significantly advanced our understanding of how parasitoids manipulate their hosts at the molecular level.

View Article and Find Full Text PDF