Vascular calcification in chronic kidney disease associated with pathogenic variants in ABCC6.

Gene

Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, 1151 Richmond St, London, ON N6A 5C1, Canada; Division of Medical Genetics, Department of Pediatrics, Victoria Hospital, London Health Science Center, 800 Commissioners Rd E, London, ON N6A 5W9, Canada; London H

Published: November 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Vascular calcification is prevalent in chronic kidney disease (CKD). Genetic causes of CKD account for 10-20% of adult-onset disease. Vascular calcification is thought to be one of the most important risk factors for increased cardiovascular morbidity and mortality in CKD patients and is detectable in 80% of patients with end stage kidney disease (ESKD). Despite the high prevalence of vascular calcification in CKD, no single gene cause has been described. We hypothesized that variants in vascular calcification genes may contribute to disease pathogenesis in CKD, particularly in families who exhibit a predominant vascular calcification phenotype. We developed a list of eight genes that are hypothesized to play a role in vascular calcification due to their involvement in the ectopic calcification pathway: ABCC6, ALPL, ANK1, ENPP1, NT5E, SLC29A1, SLC20A2, and S100A12. With this, we assessed exome data from 77 CKD patients, who remained unsolved following evaluation for all known monogenic causes of CKD. We also analyzed an independent cohort (Ontario Neurodegenerative Disease Research Initiative (ONDRI), n = 520) who were screened for variants in ABCC6 and compared this to a control cohort of healthy adults (n = 52). We identified two CKD families with heterozygous pathogenic variants (R1141X and A667fs) in ABCC6. We identified 10 participants from the ONDRI cohort with heterozygous pathogenic or likely pathogenic variant in ABCC6. Replication in a healthy control cohort did not reveal any variants. Our study provides preliminary data supporting the hypothesis that ABCC6 may play a role in vascular calcification in CKD. By screening CKD patients for genetic causes early in the diagnostic pathway, patients with genetic causes associated with vascular calcification can potentially be preventatively treated with new therapeutics with aims to decrease mortality.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2024.148731DOI Listing

Publication Analysis

Top Keywords

vascular calcification
36
kidney disease
12
ckd patients
12
ckd
10
vascular
9
calcification
9
chronic kidney
8
pathogenic variants
8
variants abcc6
8
calcification ckd
8

Similar Publications

Background: Vascular calcification represents ectopic deposition of calcium phosphate in the arterial wall. Component analysis of calcifications using dual-energy computed tomography (DECT) has helped to elucidate arteriosclerosis, but reports examining carotid calcified plaque remain lacking. The present study qualitatively evaluated calcifications using DECT in patients with stroke in our institution.

View Article and Find Full Text PDF

Chronic cerebral artery occlusion is an important cause of cerebral ischemic events. Endovascular recanalization is an effective treatment for this condition, but its success depends on appropriate patient selection and assessment. This is a retrospective study that collected patients with chronic cerebral artery occlusion who underwent endovascular recanalization to determine how imaging features from computed tomography angiography - including the extent of internal carotid artery occlusion, the number of calcified vessels, and the degree of calcification in the occluded vessels - affect the success rate of recanalization.

View Article and Find Full Text PDF

Objectives: Rheumatoid arthritis (RA) is associated with increased cardiovascular (CV) risk, yet the mechanisms remain unclear. This study aimed to evaluate myocardial structure, function, and tissue characterization using cardiovascular magnetic resonance (CMR) in RA patients and explore associations with RA disease severity.

Methods: This mixed case-control study included 48 RA patients and 34 age- and sex-matched controls.

View Article and Find Full Text PDF

Sex Specific Differences in Abdominal Aortic Aneurysm Morphology Based on Fully Automated Volume Segmented Imaging: A Multicentre Cohort Study and Propensity Score Matched Analysis.

Eur J Vasc Endovasc Surg

September 2025

School of Health and Medical Sciences, City St George's University of London, London, UK; St George's Vascular Institute, St George's Hospital, London, UK; Department of Surgery and Cancer, Imperial College London, London, UK. Electronic address:

Objective: Sex specific anatomical differences may contribute to observed disparities in outcomes and suitability for endovascular aneurysm repair (EVAR) between men and women with abdominal aortic aneurysms (AAAs). This study aimed to assess these differences using fully automated volume segmentation (FAVS) and explore implications for EVAR suitability.

Methods: This was a retrospective, multicentre cohort study of patients undergoing elective AAA repair between 2013 and 2023 in three UK tertiary centres.

View Article and Find Full Text PDF

Mesenchymal progenitor cells in perivascular niches: forerunners of mesenchymal stem cells and players in tissue scarring and regeneration.

Vascul Pharmacol

September 2025

Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, UCLA, Los Angeles, CA 90095, USA; Center for Cardiovascular Science, University of Edinburgh, Edinburgh, UK. Electronic address:

The walls of all embryonic, foetal, and adult blood vessels contain mesodermal progenitors, distributed as pericytes in capillaries and micro vessels, and fibroblastic cells in the tunica adventitia of larger veins and arteries. Following dissociation, selection by flow cytometry, and culture, those perivascular cells turn into bona fide mesenchymal stem cells of which they possess all attributes. In vivo, the adventitial cellular niche supports several spatially-organized subsets of mesodermal progenitors biased toward either osteo-, adipo-, or fibrogenesis, and dominated by more primitive, multi-lineage stem-like cells.

View Article and Find Full Text PDF