Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Offshore waters have a high incidence of oil pollution, which poses an elevated risk of ecological damage. The microbial community composition and metabolic mechanisms influenced by petroleum hydrocarbons vary across different marine regions. However, research on metabolic strategies for in-situ petroleum degradation and pollution adaptation remains in its nascent stages. This study combines metagenomic techniques with gas chromatography-mass spectrometry (GC-MS) analysis. The data show that the genera Pseudoalteromonas, Hellea, Lentisphaera, and Polaribacter exhibit significant oil-degradation capacity, and that the exertion of their degradation capacity is correlated with nutrient and oil pollution stimuli. Furthermore, tmoA, badA, phdF, nahAc, and fadA were found to be the key genes involved in the degradation of benzene, polycyclic aromatic hydrocarbons, and their intermediates. Key genes (INSR, SLC2A1, and ORC1) regulate microbial adaptation to oil-contaminated seawater, activating oil degradation processes. This process enhances the biological activity of microbial communities and accounts for the geographical variation in their compositional structure. Our results enrich the gene pool for oil pollution adaptation and degradation and provide an application basis for optimizing bioremediation intervention strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.135060DOI Listing

Publication Analysis

Top Keywords

oil pollution
12
adaptation degradation
8
petroleum hydrocarbons
8
pollution adaptation
8
key genes
8
degradation
6
oil
5
driving mechanisms
4
adaptation
4
mechanisms adaptation
4

Similar Publications

Ciprofloxacin (CIP), a widely used fluoroquinolone antibiotic, has become a significant contaminant in aquatic environments due to its extensive use and incomplete metabolism. This review comprehensively analyses CIP pollution, including its sources, environmental and health impacts, and removal strategies. Chemical methods such as advanced oxidation processes and physical techniques like adsorption are evaluated for their efficiency in CIP removal.

View Article and Find Full Text PDF

Promotion of CO Reactivity by Organic Acid on Aerosol Surfaces.

J Am Chem Soc

September 2025

State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

Recently, the atmospheric aerosol surface, which is reported to be quite acidic, is recognized as an important microreactive medium for atmospheric chemistry, profoundly impacting air quality and global climate. Nevertheless, the molecular-level understanding of the effect of surface-bound acids on atmospheric chemical reactions remains limited. Herein, the reactions between CO and NH/amines at the air-water interface with organic acids are investigated using combined molecular dynamic simulations and quantum chemical calculations.

View Article and Find Full Text PDF

Identifying the sources of sedimentary organic matter (OM) is essential for understanding pollution dynamics and guiding effective management in estuarine environments. This study proposes a novel and transferable source tracking framework that integrates Fourier transform infrared (FTIR) and fluorescence spectroscopy with a principal component analysis-absolute principal component score-multiple linear regression (PCA-APCS-MLR) receptor model to apportion OM sources in surface sediments across four South Korean estuaries with contrasting land use. Five new infrared-based indices (IRIs), developed from diagnostic FTIR absorbance features of water-extractable organic matter (WEOM), were designed to capture source-specific functional group compositions linked to terrestrial, synthetic, and petroleum-derived OM.

View Article and Find Full Text PDF

Electrical Characterization of Indoor Air Quality in the Presence of Various Natural Air Purifiers.

ACS Omega

September 2025

Department of Electrical and Computer Engineering, North South University, Bashundhara, Plot # 15, Dhaka Division, Dhaka 1229, Bangladesh.

Air pollution is a critical threat to human health and the quality of life in large cities. In this work, we electrically characterized indoor air quality in Dhaka City with a microcontroller-based advanced sensing system in the presence of 60 air purifiers. We conducted LabVIEW-controlled, fully automated, and remotely operated experiments to precisely monitor, store, and analyze the air-purifying effects in the concentrations of air quality index (AQI) parametersPM2.

View Article and Find Full Text PDF

Surfactant-enhanced aquifer remediation (SEAR) is an effective strategy for removing dense non-aqueous phase liquids (DNAPLs) from contaminated groundwater. While Gemini surfactants possess unique dimeric structures and excellent physicochemical properties, the role of hydrophobic chain length in governing their solubilization performance has not been systematically clarified. Here, five sugar-based anionic-nonionic Gemini surfactants (SANG 06, 08, 09, 10, and 13) with different hydrophobic chain lengths were synthesized and evaluated.

View Article and Find Full Text PDF