98%
921
2 minutes
20
Unlabelled: The development of efficient, low-cost water splitting electrocatalysts is needed to store energy by generating sustainable hydrogen from low power clean but intermittent energy sources such as solar and wind. Here, we report a highly sustained low overpotential for oxygen evolution reached by the unique combination of three metals (NiCoV) prepared from a simple low temperature auto-combustion process. The amorphous multimetal oxygen evolving catalyst could be stably coated on a stainless-steel support using a tribochemical particle blasting method to create an oxygen evolution reaction (OER) electrode with a low overpotential of 230 mV at 10 mA cm and a low Tafel slope of 40 mV dec. In addition to their low overpotential, this oxygen evolving electrocatalyst preserved performance demonstrating a stability after 10 h at the technologically relevant current density and without any surface morphology alteration. Given the importance of sustainable hydrogen production, the development of this new OER catalyst points the way to removing a key technical bottleneck for the water splitting reaction and could offer a route to cost reduction and lowering hurdles to more widespread adaptation of electrolyser technologies for hydrogen production.
Supplementary Information: The online version contains supplementary material available at 10.1007/s43939-024-00087-5.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11199262 | PMC |
http://dx.doi.org/10.1007/s43939-024-00087-5 | DOI Listing |
ACS Appl Mater Interfaces
September 2025
Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, P. R. China.
The development of high-performance, cost-effective non-noble metal catalysts for the oxygen evolution reaction (OER) is critical to advancing sustainable hydrogen production via water electrolysis. Herein, we report a facile and mild strategy for synthesizing amorphous bimetallic organic framework materials (NiFe-MOFs) using pyridine-modified threonine (l-PyThr) as an organic ligand. The optimized NiFe-PyThr-4:1 catalyst exhibits remarkable OER activity, requiring low overpotentials of only 162 and 222 mV to achieve current densities of 10 and 100 mA cm, respectively, along with a small Tafel slope of 34.
View Article and Find Full Text PDFCurr Biol
July 2025
Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China. Electronic address: jinxianliu@gmail
Determination of evolutionary mechanisms underlying innovative traits is crucial for understanding the vast diversity of species and phenotypes. Given their respiratory physiologies, fishes are compelling subjects for evolutionary analysis of the hemoprotein-based oxygen-transport systems. Asian noodlefishes (Osmeriformes: Salangidae) and Antarctic icefishes (Notothenioidei: Channichthyidae) are examples of fish clades that generally do not express myoglobin or hemoglobin.
View Article and Find Full Text PDFNano Lett
September 2025
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
Constructing heterogeneous dual-site catalysts is anticipated for oxygen evolution reaction (OER). However, compared to the adsorbate evolution mechanism (AEM), the triggering oxide pathway mechanism (OPM) for catalysts poses challenges due to elusive structural evolution and low intrinsic activity. Herein, considering the distinct adsorption propensity of heterogeneous Ni-Fe sites toward differential intermediates (OH-O), the PO-induced deep reconstruction triggers a dual-site Ni-Fe discrepant oxide pathway mechanism (DOPM) for R-PO-NiCoFeOOH.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand.
The accumulation of nitrate (NO) from agricultural runoff poses a growing threat to ecosystems and public health. Converting nitrate into ammonia (NH) through the electrochemical nitrate reduction reaction (NORR) offers a promising strategy to mitigate environmental contamination while creating a sustainable circular route to fertilizer production. However, achieving high NH production and energy efficiency remains challenging.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Confucius Energy Storage Lab, School of Energy and Environment & Z Energy Storage Center, Southeast University, Nanjing 211189, China.
Developing efficient and durable catalysts for the oxygen evolution reaction (OER) in acidic media is essential for advancing proton exchange membrane water electrolysis (PEMWE). However, catalyst instability caused by lattice oxygen (O) depletion and metal dissolution remains a critical barrier. Here, we propose an oxophilic-site-mediated dynamic oxygen replenishment mechanism (DORM), in which O actively participates in O-O bond formation and is continuously refilled by water-derived species.
View Article and Find Full Text PDF