Exploring the Comprehensive Neuroprotective and Anticancer Potential of Afzelin.

Pharmaceuticals (Basel)

Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland.

Published: May 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, Huntington's disease, and others) and cancer, seemingly disparate in their etiology and manifestation, exhibit intriguing associations in certain cellular and molecular processes. Both cancer and neurodegenerative diseases involve the deregulation of cellular processes such as apoptosis, proliferation, and DNA repair and pose a significant global health challenge. Afzelin (kaempferol 3-O-rhamnoside) is a flavonoid compound abundant in various plant sources. Afzelin exhibits a diverse range of biological activities, offering promising prospects for the treatment of diseases hallmarked by oxidative stress and deregulation of cell death pathways. Its protective potential against oxidative stress is also promising for alleviating the side effects of chemotherapy. This review explores the potential therapeutic implications of afzelin, including its capacity to mitigate oxidative stress, modulate inflammation, and promote cellular regeneration in neurodegenerative and cancer diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11206995PMC
http://dx.doi.org/10.3390/ph17060701DOI Listing

Publication Analysis

Top Keywords

oxidative stress
12
neurodegenerative diseases
8
exploring comprehensive
4
comprehensive neuroprotective
4
neuroprotective anticancer
4
anticancer potential
4
afzelin
4
potential afzelin
4
afzelin neurodegenerative
4
diseases
4

Similar Publications

Parkinson's disease (PD) is characterized by impairments in motor control following the degeneration of dopamine-producing neurons located in the substantia nigra pars compacta. Environmental pesticides such as Paraquat (PQ) and Maneb (MB) contribute to the onset of PD by inducing oxidative stress (OS). This study evaluated the therapeutic efficacy of moderate physical activity (PA) on both motor and non-motor symptoms in a Wistar rat model of Paraquat and Maneb (PQ/MB) induced PD.

View Article and Find Full Text PDF

Brain ischemia is a major global cause of disability, frequently leading to psychoneurological issues. This study investigates the effects of 4-aminopyridine (4-AP) on anxiety, cognitive impairment, and potential underlying mechanisms in a mouse model of medial prefrontal cortex (mPFC) ischemia. Mice with mPFC ischemia were treated with normal saline (NS) or different doses of 4-AP (250, 500, and 1000 µg/kg) for 14 consecutive days.

View Article and Find Full Text PDF

Cardiovascular-Kidney-Metabolic (CKM) syndrome, a newly defined systemic disorder, is characterized by the pathological interplay among diabetes, chronic kidney disease (CKD), and cardiovascular disease (CVD). Recent studies have identified chronic inflammation not only as a central mediator in the pathological progression of CKM syndrome but also as a pivotal molecular hub that drives coordinated damage across multiple organ systems. Mechanistic investigations have revealed that aberrant activation of signaling pathways such as NF-κB, Wnt, PI3K-AKT, JAK-STAT, and PPAR constitutes a complex inflammatory regulatory network.

View Article and Find Full Text PDF