Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Modification is widely used to enhance the adsorption performance of pristine hydrochar (HBC) and pyrochar (BC). However, comparisons between modified HBC and BC toward pollutant removal have rarely been reported. In this study, pristine HBC and BC derived from rice straw were first produced, and then citric acid (CA) was used as a modifier to synthesize CA-modified HBC (CAHBC) and CA-modified BC (CABC). Furthermore, the adsorption performance of biochars toward methylene blue (MB) was investigated. The results showed that BC exhibits relatively rough surfaces and contains more minerals (ash), whereas HBC has plentiful O-containing functional groups and fewer minerals. CA modification partially removed minerals from the surface of BC, which weakened the ion exchange, surface complexation, and n-π interaction, resulting in a lower adsorption ability toward MB. By contrast, CA produced more O-containing functional groups on the surface of HBC, which strengthened the hydrogen bonding and electrostatic interaction, thus increasing the adsorption capacity toward MB. The two-compartment model showed a good fit to the adsorption process of MB on CAHBC, and the isotherm data for MB adsorption by HBC and CAHBC are suitable for the Freundlich model. The highest adsorption amount of MB using CAHBC was 80.13 mg·g, which was 27.66% higher than that for CABC. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analysis indicated that the carboxyl groups in the surface functional groups of CAHBC played a crucial role in the MB adsorption process. In addition, CAHBC showed a good performance for a wide range of pH values (4.0-10.0) and under the interference of coexisting ions, and also presented a recycling ability. Furthermore, the adsorption of MB on CAHBC biochar was a spontaneous, exothermic, degree-of-randomness-increasing process. Consequently, CA modification of HBC is a promising strategy and could be used for MB removal from aquatic environments.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10661-024-12836-3DOI Listing

Publication Analysis

Top Keywords

functional groups
16
adsorption performance
12
adsorption
10
citric acid
8
methylene blue
8
hbc
8
hbc cahbc
8
o-containing functional
8
groups surface
8
adsorption process
8

Similar Publications

Eucommia ulmoides Oliver leaf is rich in chlorogenic acid, which has antioxidant, antiviral, and anti-inflammatory activities. In this work, a new and green strategy for functional hyper-crosslinked adsorption resin based on Friedel-Crafts reaction of pendant vinyl groups in divinylbenzene with anhydrous ethanol and acrylamide grafting polymerization was developed, and the obtained HCREt-AM resin had excellent performance on chlorogenic acid separation from Eucommia ulmoides Oliver leaf extract. Adsorption isotherm and kinetics study showed the adsorption process fitted by Langmuir adsorption isotherm and pseudo-second-order kinetic equation.

View Article and Find Full Text PDF

Hexaazaisowurtzitane (CL-20) is a high-energy-density compound with poor thermal stability, which hinders its application in composite energetic systems. A bi-interface structure of polydopamine-coated graphene oxide (GO@PDA) is shown to markedly improve thermal stability compared with pristine CL-20 and single-layer coatings. Reactive molecular dynamics simulations enhanced by a neural network potential (NNP) reveal that the delayed onset of decomposition arises from suppressed NO release and altered spatial density distribution, while interfacial -OH and -COOH groups consume intermediates, redirect decomposition pathways, and inhibit autocatalytic chain reactions.

View Article and Find Full Text PDF

"Cut-and-Sew" Reactions of β-Lactams via C-C Bond Activation.

J Am Chem Soc

September 2025

Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States.

Transition metal-catalyzed "cut-and-sew" reactions offer an efficient approach to construct bridged and fused scaffolds; however, the substrates have been primarily restricted to cyclic ketones and activated cyclopropanes. Here we report the first cut-and-sew transformation between β-lactams and alkenes/alkynes via C-C bond activation. Diverse bridged and fused nitrogen-heterocycles are prepared using this method with good functional group tolerance.

View Article and Find Full Text PDF

Background: Sodium-glucose cotransporter 2 (SGLT2) inhibitors, such as Empagliflozin, are antidiabetic drugs that reduce glucose levels and have emerged as a promising therapy for patients with heart failure (HF), although the exact molecular mechanisms underlying their cardioprotective effects remain to be fully elucidated. The EmDia study, a randomized, double-blind trial conducted at the University Medical Center of Mainz, has confirmed the beneficial effects of Empagliflozin in HF patients after both one and twelve weeks of treatment. In this work, we aimed to assess whether changes in lipid profiles driven by Empagliflozin use in HF patients in the EmDia trial could assist in gaining a better understanding of its cardioprotective mechanisms.

View Article and Find Full Text PDF

Imaging mass cytometry dataset of small-cell lung cancer tumors and tumor microenvironments.

BMC Res Notes

September 2025

Center for Molecular Medicine Cologne, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany.

Objectives: Small cell lung cancer (SCLC) accounts for approximately 15% of lung tumors and is marked by aggressive growth and early metastatic spread. In this study, we used two SCLC mouse models with differing tumor mutation burdens (TMB). To investigate tumor composition, spatial architecture, and interactions with the surrounding microenvironment, we acquired multiplexed images of mouse lung tumors using imaging mass cytometry (IMC).

View Article and Find Full Text PDF