98%
921
2 minutes
20
IDEAL PLANT ARCHITECTURE1 (IPA1) is a pivotal gene controlling plant architecture and grain yield. However, little is known about the effects of Triticum aestivum SQUAMOSA PROMOTER-BINDING-LIKE 14 (TaSPL14), an IPA1 ortholog in wheat, on balancing yield traits and its regulatory mechanism in wheat (T. aestivum L.). Here, we determined that the T. aestivum GRAIN WIDTH2 (TaGW2)-TaSPL14 module influences the balance between tiller number and grain weight in wheat. Overexpression of TaSPL14 resulted in a reduced tiller number and increased grain weight, whereas its knockout had the opposite effect, indicating that TaSPL14 negatively regulates tillering while positively regulating grain weight. We further identified TaGW2 as a novel interacting protein of TaSPL14 and confirmed its ability to mediate the ubiquitination and degradation of TaSPL14. Based on our genetic evidence, TaGW2 acts as a positive regulator of tiller number, in addition to its known role as a negative regulator of grain weight, which is opposite to TaSPL14. Moreover, combinations of TaSPL14-7A and TaGW2-6A haplotypes exhibit significantly additive effects on tiller number and grain weight in wheat breeding. Our findings provide insight into how the TaGW2-TaSPL14 module regulates the trade-off between tiller number and grain weight and its potential application in improving wheat yield.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jipb.13723 | DOI Listing |
Poult Sci
August 2025
Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario, N1G2W1 Canada; Campbell Centre for the Study of Animal Welfare, University of Guelph, Guelph, Ontario N1G2W1 Canada. Electronic address:
Laying hens possess a calcium-specific appetite that intensifies towards lights out to meet the high demands for eggshell formation and skeletal maintenance. Pecking blocks (PBs) are edible enrichments that can serve as an additional calcium source. We explored the relationships between PB preference (PBp), PB use, keel fracture status (KS), and eggshell quality.
View Article and Find Full Text PDFBMC Microbiol
September 2025
Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.
Background: A plant-focused, healthy dietary pattern, such as the Mediterranean diet enriched with dietary fiber, polyphenols, and polyunsaturated fats, is well known to positively influence the gut microbiota. Conversely, a processed diet high in saturated fats and sugars negatively impacts gut diversity, potentially leading to weight gain, insulin resistance, and chronic, low-grade inflammation. Despite this understanding, the mechanisms by which the Mediterranean diet impacts the gut microbiota and its associated health benefits remain unclear.
View Article and Find Full Text PDFMol Plant
September 2025
Jiangsu Xuhuai Regional Institute of Agricultural Sciences, Xuzhou 221131, China. Electronic address:
This study identifies TaPL1, a MADS-box transcription factor underlying the QFiriti-6B QTL, as a key regulator of peduncle elongation in wheat. TaPL1 enhances brassinosteroid signaling through direct suppression of TaBKI1, and its loss-of-function alleles exhibit reduced plant height and peduncle length, but increased grain weight, offering valuable targets for yield improvement in wheat breeding.
View Article and Find Full Text PDFPLOS Digit Health
September 2025
Singapore Health Services, Artificial Intelligence Office, Singapore.
Large Language Models (LLMs) show promise in augmenting digital health applications. However, development and scaling of large models face computational constraints, data security concerns and limitations of internet accessibility in some regions. We developed and tested Med-Pal, a medical domain-specific LLM-chatbot fine-tuned with a fine-grained, expert curated medication-enquiry dataset consisting of 1,100 question and answer pairs.
View Article and Find Full Text PDFBiology (Basel)
August 2025
College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China.
This study evaluated the effects of dietary probiotic-fermented corn wet distillers grains (FCWDGs) on finishing pigs. Three strains (CGMCC21218, CCTCC2022073, and CICC10275) were used to ferment corn wet distillers grains, yielding FCWDGs-1, FCWDGs-2, and FCWDGs-3. A total of 128 130-day-old Anqing six white pigs were randomly assigned to four groups: a control group and groups supplemented with 6% FCWDGs-1 (T1), FCWDGs-2 (T2), and FCWDGs-3 (T3).
View Article and Find Full Text PDF