Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The hexagonal ferrite h-YbFeO grown on YSZ(111) by pulsed laser deposition is foreseen as a promising single multiferroic candidate where ferroelectricity and antiferromagnetism coexist for future applications at low temperatures. We studied in detail the microstructure as well as the temperature dependence of the magnetic properties of the devices by comparing the heterostructures grown directly on YSZ(111) (i.e., YbPt_Th0nm) with h-YbFeO films deposited on substrates buffered with platinum Pt/YSZ(111) and in dependence on the Pt underlayer film thickness (i.e., YbPt_Th10nm, YbPt_Th40nm, YbPt_Th55nm, and YbPt_Th70nm). The goal was to deeply understand the importance of the crystal quality and morphology of the Pt underlayer for the h-YbFeO layer crystal quality, surface morphology, and the resulting physical properties. We demonstrate the relevance of homogeneity, continuity, and hillock formation of the Pt layer for the h-YbFeO microstructure in terms of crystal structure, mosaicity, grain boundaries, and defect distribution. The findings of transmission electron microscopy and X-ray diffraction reciprocal space mapping characterization enable us to conclude that an optimum film thickness for the Pt bottom electrode is = 70 nm, which improves the crystal quality of h-YbFeO films grown on Pt-buffered YSZ(111) in comparison with h-YbFeO films grown on YSZ(111) (i.e., YbPt_Th0nm). The latter shows a disturbance in the crystal structure, in the up-and-down atomic arrangement of the ferroelectric domains, as well as in the Yb-Fe exchange interactions. Therefore, an enhancement in the remanent and in the total magnetization was obtained at low temperatures below 50 K for h-YbFeO films deposited on Pt-buffered substrates Pt/YSZ(111) when the Pt underlayer reached = 70 nm.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11206664PMC
http://dx.doi.org/10.3390/nano14121041DOI Listing

Publication Analysis

Top Keywords

crystal quality
16
h-ybfeo films
16
magnetic properties
8
grown ysz111
8
low temperatures
8
ysz111 ybpt_th0nm
8
films deposited
8
film thickness
8
crystal structure
8
films grown
8

Similar Publications

Tuning the Electrical Property and Electronic Band Structures of Organic Semiconductors via Surface Tension.

J Phys Chem Lett

September 2025

National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China.

Stress engineering is an effective way to tune the performance of semiconductors, which has been verified in the work of inorganic and organic single-crystal semiconductors. However, due to the limitations of the vapor-phase growth preparation conditions, the deposited polycrystalline organic semiconductors are more susceptible to residual stress. Therefore, it is of great research significance to develop a low-cost stress engineering applicable to vapor-deposited semiconductors.

View Article and Find Full Text PDF

Mitigative effects of carboxymethyl chitosan on the deterioration of gliadin tractility in frozen rice dough during frozen storage.

Food Chem X

August 2025

School of Life Science, Anqing Normal University, Jixian North Road1318, Yixiu District, Anqing 246052, Anhui Province, China.

Frozen storage deteriorates the texture and digestibility of frozen rice dough by damaging gliadin structure and starch integrity. This study investigated carboxymethyl chitosan (CMCh) and sodium carboxymethyl cellulose (CMCNa) as cry-oprotectants to mitigate these effects. Comprehensive analysis utilizing nuclear magnetic resonance (NMR), texture profile analysis (TPA), dynamic contact angle measurement (DCAT21), reversed-phase high-performance liquid chromatography (RP-HPLC), and circular dichroism (CD) demonstrated that 1.

View Article and Find Full Text PDF

Novel Precursor for h‑BN Synthesis on Ni(111) Substrates.

J Phys Chem C Nanomater Interfaces

September 2025

Leiden Insitute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, Netherlands.

In this study, we report the synthesis of single-crystalline h-BN on Ni(111) under ultrahigh vacuum (UHV) conditions using hexamethylborazine (HMB) as a nonclassical precursor. The novel use of HMB facilitates the diffusion of methyl groups into the bulk of Ni(111), playing a critical role in the achievement of high-quality crystalline h-BN layers. The synthesis is performed on a 2 mm-thick Ni(111) single crystal and on a 2-μm-thick Ni(111) thin film on sapphire to evaluate the feasibility of synthesizing h-BN on industrially relevant substrates.

View Article and Find Full Text PDF

Herein we present the rapid development of LH168, a potent and highly selective chemical probe for WDR5, streamlined by utilizing a DEL-ML (DNA encoded library-machine learning) hit as the chemical starting point. LH168 was comprehensively characterized in bioassays and demonstrated potent target engagement at the WIN-site pocket of WDR5, with an EC of approximately 10 nM, a long residence time, and exceptional proteome-wide selectivity for WDR5. In addition, we present the X-ray co-crystal structure and provide insights into the structure-activity relationships (SAR).

View Article and Find Full Text PDF

The calibration of the JET x-ray spectrometer is presented. The absolute throughput, diffractor focusing, and instrument function of the spectrometer are presented, and the quality of the ion temperature measurement is re-assessed, particularly at the lower end. The addition of a second diffractor enables the simultaneous measurements of the spectra from H- and He-like nickel, which widens the spatial coverage of the core-ion temperature measurements for high-performance plasmas at a fixed Bragg angle range.

View Article and Find Full Text PDF