Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Early detection of pneumoconiosis by routine health screening of workers in the mining industry is critical for preventing the progression of this incurable disease. Automated pneumoconiosis classification in chest X-ray images is challenging due to the low contrast of opacities, inter-class similarity, intra-class variation and the existence of artifacts. Compared to traditional methods, convolutional neural networks have shown significant improvement in pneumoconiosis classification tasks, however, accurate classification remains challenging due to mainly the inability to focus on semantically meaningful lesion opacities. Most existing networks focus on high level abstract information and ignore low level detailed object information. Different from natural images where an object occupies large space, the classification of pneumoconiosis depends on the density of small opacities inside the lung. To address this issue, we propose a novel two-stage adaptive multi-scale feature pyramid network called AMFP-Net for the diagnosis of pneumoconiosis from chest X-rays. The proposed model consists of 1) an adaptive multi-scale context block to extract rich contextual and discriminative information and 2) a weighted feature fusion module to effectively combine low level detailed and high level global semantic information. This two-stage network first segments the lungs to focus more on relevant regions by excluding irrelevant parts of the image, and then utilises the segmented lungs to classify pneumoconiosis into different categories. Extensive experiments on public and private datasets demonstrate that the proposed approach can outperform state-of-the-art methods for both segmentation and classification.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.artmed.2024.102917DOI Listing

Publication Analysis

Top Keywords

adaptive multi-scale
12
multi-scale feature
8
feature pyramid
8
pyramid network
8
diagnosis pneumoconiosis
8
pneumoconiosis chest
8
chest x-ray
8
x-ray images
8
pneumoconiosis classification
8
high level
8

Similar Publications

Thrips can damage over 200 species across 62 plant families, causing significant economic losses worldwide. Their tiny size, rapid reproduction, and wide host range make them prone to outbreaks, necessitating precise and efficient population monitoring methods. Existing intelligent counting methods lack effective solutions for tiny pests like thrips.

View Article and Find Full Text PDF

Multi-scale convolutional attention GRU network combined with improved CARS strategy to determine key elements in ores by XRF.

Anal Chim Acta

November 2025

School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, PR China; Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang, 313001, PR China; Laboratory for Microwave Spatial Inte

Background: X-ray fluorescence (XRF) technology is a promising method for estimating the metal element content in ores, which helps in understanding ore composition and optimizing mining and processing strategies. However, due to the presence of a large number of redundant features in XRF spectra, traditional quantitative analysis models struggle to effectively capture the nonlinear relationship between element concentration and spectral information of XRF, making it more difficult to accurately predict metal element concentrations. Thus, analyzing ore element concentrations by XRF remains a significant challenge.

View Article and Find Full Text PDF

Interpretable Semi-federated Learning for Multimodal Cardiac Imaging and Risk Stratification: A Privacy-Preserving Framework.

J Imaging Inform Med

September 2025

Heart Center, Department of Geriatrics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.

The growing heterogeneity of cardiac patient data from hospitals and wearables necessitates predictive models that are tailored, comprehensible, and safeguard privacy. This study introduces PerFed-Cardio, a lightweight and interpretable semi-federated learning (Semi-FL) system for real-time cardiovascular risk stratification utilizing multimodal data, including cardiac imaging, physiological signals, and electronic health records (EHR). In contrast to conventional federated learning, where all clients engage uniformly, our methodology employs a personalized Semi-FL approach that enables high-capacity nodes (e.

View Article and Find Full Text PDF

Light adaptive image enhancement for improving visual analysis in intercropping cultivation.

Front Plant Sci

August 2025

Chinese Academy of Agriculture Mechanization Sciences Group Co., Ltd., Beijing, China.

Intercropping maize and soybean with distinct plant heights is a typical practice in diversified cropping systems, where shadows cast by taller maize plants onto soybean rows pose significant challenges for image based recognition. This study conducted experiments throughout the entire soybean-maize intercropping period to address illumination variation. Based on the height difference between crops, solar elevation angle, and light intensity at the top of the soybean canopy, an illumination compensation regression model was developed.

View Article and Find Full Text PDF

Multi-modal data fusion plays a critical role in enhancing the accuracy and robustness of perception systems for autonomous driving, especially for the detection of small objects. However, small object detection remains particularly challenging due to sparse LiDAR points and low-resolution image features, which often lead to missed or imprecise detections. Currently, many methods process LiDAR point clouds and visible-light camera images separately, and then fuse them in the detection head.

View Article and Find Full Text PDF