98%
921
2 minutes
20
Objective and background This study aimed to develop a deep convolutional neural network (DCNN) model capable of generating synthetic 4D magnetic resonance angiography (MRA) from 3D time-of-flight (TOF) images, allowing estimation of temporal changes in arterial flow. TOF MRA provides static information about arterial structures through maximum intensity projection (MIP) processing, but it does not capture the dynamic information of contrast agent circulation, which is lost during MIP processing. Considering the principles of TOF, it is hypothesized that dynamic information about arterial blood flow is latent within TOF signals. Although arterial spin labeling (ASL) can extract dynamic arterial information, ASL MRA has drawbacks, such as longer imaging times and lower spatial resolution than TOF MRA. This study's primary aim is to extend the utility of TOF MRA by training a machine-learning model on paired TOF and ASL data to extract latent dynamic information from TOF signals. Methods A DCNN combining a modified U-Net and a long-short-term memory (LSTM) network was trained on a dataset of 13 subjects (11 men and two women, aged 42-77 years) using paired 3D TOF MRA and 4D ASL MRA images. Subjects had no history of cerebral vessel occlusion or significant stenosis. The dataset was acquired using a 3T MRI system with a 32-channel head coil. Preprocessing involved resampling and intensity normalization of TOF and ASL images, followed by data augmentation and arterial mask generation. The model learned to extract flow information from TOF images and generate 8-phase 4D MRA images. The precision of flow estimation was evaluated using the coefficient of determination (R²) and Bland-Altman analysis. A board-certified neuroradiologist validated the quality of the images and the absence of significant stenosis in the major cerebral arteries. Results The generated 4D MRA images closely resembled the ground-truth ASL MRA data, with R² values of 0.92, 0.85, and 0.84 for the internal carotid artery (ICA), proximal middle cerebral artery (MCA), and distal MCA, respectively. Bland-Altman analysis revealed a systematic error of -0.06, with 95% agreement limits ranging from -0.18 to 0.12. Additionally, the model successfully identified flow abnormalities in a subject with left MCA stenosis, displaying a delayed peak and subsequent flattening distal to the stenosis, indicative of reduced blood flow. Visualization of the predicted arterial flow overlaid on the original TOF MRA images highlighted the spatial progression and dynamics of the flow. Conclusions The DCNN model effectively generated synthetic 4D MRA images from TOF images, demonstrating its potential to estimate temporal changes in arterial flow accurately. This non-invasive technique offers a promising alternative to conventional methods for visualizing and evaluating healthy and pathological flow dynamics. It has significant potential to improve the diagnosis and treatment of cerebrovascular diseases by providing detailed temporal flow information without the need for contrast agents or invasive procedures. The practical implementation of this model could enable the extraction of dynamic cerebral blood flow information from routine brain MRI examinations, contributing to the early diagnosis and management of cerebrovascular disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11190969 | PMC |
http://dx.doi.org/10.7759/cureus.60803 | DOI Listing |
J Am Coll Health
September 2025
Department of Family Medicine (Student Health), Duke University, Durham, North Carolina, USA.
The authors describe a case of vertebral artery dissection in a patient with Turner Syndrome presenting to a university student health center. Cervical artery dissection (CeAD) is the most common cause of stroke in young adults and should be considered in patients with underlying risk factors. It usually presents with local symptoms caused by compression of adjacent nerves and their feeding vessels, as well as ischemia and hemorrhagic events.
View Article and Find Full Text PDFAbdom Radiol (NY)
September 2025
Peking University First Hospital, Beijing, China.
Purpose: To evaluate the feasibility and clinical utility of non-contrast magnetic resonance angiography (NC-MRA) using a modified balanced steady-state free precession (b-SSFP) technique combined with arterial spin labeling (ASL) for post-embolotherapy follow-up of renal artery aneurysms (RAAs), with digital subtraction angiography (DSA) as the reference standard.
Method: A total of 57 patients with RAAs underwent embolotherapy between June 2013 and July 2024. Among them, 15 RAAs from 14 patients underwent post-embolization surveillance with the NC-MRA and DSA.
J Magn Reson Imaging
September 2025
Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.
Background: Carotid artery stenosis is a major cause of stroke. Non-contrast MR angiography (MRA) using time-spatial labeling inversion pulse (Time-SLIP) may offer potential advantages over 3D time-of-flight (TOF)-MRA for simultaneous visualization of carotid, vertebral, and subclavian arteries, but remains uninvestigated.
Purpose: To determine optimal black blood inversion time (TI) for visualizing the carotid and subclavian arteries using three-dimensional (3D) fast field echo (FFE) Time-SLIP MRA, and to compare its image quality with 3D TOF-MRA.
Eur J Case Rep Intern Med
July 2025
Department of Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, USA.
Background: Thrombotic thrombocytopenic purpura (TTP) is a life-threatening hematologic emergency caused by ADAMTS13 deficiency, leading to microvascular thrombosis, haemolytic anaemia, thrombocytopenia, and end-organ damage. Neurological symptoms occur in up to 90% of cases and are frequently misdiagnosed as stroke. Prompt recognition and treatment reduce the mortality rate from over 90% to 10-20%.
View Article and Find Full Text PDFFront Oncol
August 2025
Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Introduction: Synovial sarcoma (SS) is one of the most prevalent malignant soft tissue sarcomas in children and adolescents. Pediatric populations often present with atypical features, complicating the differentiation from benign intramuscular venous malformations (VMs).
case Presentation: An 11-year-old male with a four-year history of progressive right plantar pain and a compressible intramuscular mass.