Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Corrosion-resistant coatings with self-healing capabilities are still a great challenge for metal protection. In this study, a corrosion-resistant coating with intrinsic self-healing capabilities was developed by compounding hydroxy-terminated silicone oil (HTSO) with 2-ureido-4[1]-pyrimidone (UPy) derivatives. The smooth surface of the coating was shown by scanning electron microscopy (SEM), and good smoothness was also exhibited in the cross-section, which indicated that the coating is very homogeneous from the top to the bottom. Thermogravimetric analysis (TG) was employed to illustrate the temperature-resistant characteristics of the coating, revealing its significant chemical stability up to 360 °C. The corrosion resistance of the coating is assessed through electrochemical impedance spectroscopy (EIS), the typical impedance at 0.01 Hz is 1.70 × 10 and 2.44 × 10 Ω·cm before and after exposure to a 3.5 wt % NaCl solution for 70 days. There was no significant change in the water contact angle of the coatings before and after immersion; however, the adhesion strength was reduced. Notably, the coating demonstrates immediate and multiple self-healing properties. The tensile stress of the associated healing sample experiences an augmentation within the temperature range of 30-120 °C, with the critical fracture strain of the healed sample reaching 235% at 120 °C. The self-healing mechanism of the coating is systematically investigated using in situ Raman spectroscopy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c05347DOI Listing

Publication Analysis

Top Keywords

coating
8
self-healing capabilities
8
intrinsic self-healable
4
self-healable corrosion-resistant
4
corrosion-resistant silicone
4
silicone coating
4
coating based
4
based quadruple
4
quadruple hydrogen-bonded
4
hydrogen-bonded supramolecular
4

Similar Publications

Indium tin oxide (Sn/InO) is a degenerately doped semiconductor nanocrystal (NC) that exhibits localized surface plasmon resonance (LSPR) in the short-wavelength infrared electromagnetic spectral range. Alternative to metals, the tunability of LSPR is possible in doped semiconductor NCs by controlling the dopant type, doping level, and opto-electrochemical modulation. In this study, dopant oxidation valency in carrier density and LSPR peaks (Sn(IV): 1.

View Article and Find Full Text PDF

The electrolyte-electrode interface serves as the foundation for a myriad of chemical and physical processes. In battery chemistry, the formation of a well-known solid-electrolyte interphase (SEI) plays a pivotal role in ensuring the reversible operations of rechargeable lithium-ion batteries (LIBs). However, characterizing the precise chemical composition of the low crystallinity and highly sensitive SEI presents a formidable challenge.

View Article and Find Full Text PDF

Scalable Photothermal Superhydrophobic Deicing Coating with Mechanochemical-Thermal Robustness.

ACS Appl Mater Interfaces

September 2025

Department of Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.

Developing scalable and robust deicing coatings is essential for real-world applications, yet current coatings either suffer from intrinsic fragility or low thermal conductivity, limiting sustainability and deicing effectiveness. Here, we report a scalable and durable photothermal superhydrophobic coating coupling with enhanced thermal conductivity, engineered by embedding carbon nanotubes within a perfluoroalkoxy polymer matrix. Our design achieved 97.

View Article and Find Full Text PDF

Background: Long-term comparative data on drug-eluting stents (DES) and drug-coated balloons (DCB) for femoropopliteal artery (FPA) disease remain limited.

Objectives: The authors sought to compare 3-year outcomes of DES vs DCB without bailout stenting in FPA disease.

Methods: We retrospectively analyzed 1,406 patients from a multicenter registry who underwent endovascular therapy for FPA using DES (n = 342) or DCB (n = 1,064) after the successful lesion preparation.

View Article and Find Full Text PDF