Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Objective: The recent surge in popularity of large language models (LLMs), such as ChatGPT, has showcased their proficiency in medical examinations and potential applications in health care. However, LLMs possess inherent limitations, including inconsistent accuracy, specific prompting requirements, and the risk of generating harmful hallucinations. A domain-specific model might address these limitations effectively.
Study Design: Developmental design.
Setting: Virtual.
Methods: Otolaryngology-head and neck surgery (OHNS) relevant data were systematically gathered from open-access Internet sources and indexed into a knowledge database. We leveraged Retrieval-Augmented Language Modeling to recall this information and utilized it for pretraining, which was then integrated into ChatGPT4.0, creating an OHNS-specific knowledge question & answer platform known as ChatENT. The model is further tested on different types of questions.
Results: ChatENT showed enhanced performance in the analysis and interpretation of OHNS information, outperforming ChatGPT4.0 in both the Canadian Royal College OHNS sample examination questions challenge and the US board practice questions challenge, with a 58.4% and 26.0% error reduction, respectively. ChatENT generated fewer hallucinations and demonstrated greater consistency.
Conclusion: To the best of our knowledge, ChatENT is the first specialty-specific knowledge retrieval artificial intelligence in the medical field that utilizes the latest LLM. It appears to have considerable promise in areas such as medical education, patient education, and clinical decision support. The model has demonstrated the capacity to overcome the limitations of existing LLMs, thereby signaling a future of more precise, safe, and user-friendly applications in the realm of OHNS and other medical fields.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ohn.864 | DOI Listing |