98%
921
2 minutes
20
Background: Profiling circulating cell-free DNA (cfDNA) has become a fundamental practice in cancer medicine, but the effectiveness of cfDNA at elucidating tumor-derived molecular features has not been systematically compared to standard single-lesion tumor biopsies in prospective cohorts of patients. The use of plasma instead of tissue to guide therapy is particularly attractive for patients with small cell lung cancer (SCLC), a cancer whose aggressive clinical course making it exceedingly challenging to obtain tumor biopsies.
Methods: Here, a prospective cohort of 49 plasma samples obtained before, during, and after treatment from 20 patients with recurrent SCLC, we study cfDNA low pass whole genome (0.1X coverage) and exome (130X) sequencing in comparison with time-point matched tumor, characterized using exome and transcriptome sequencing.
Results: Direct comparison of cfDNA versus tumor biopsy reveals that cfDNA not only mirrors the mutation and copy number landscape of the corresponding tumor but also identifies clinically relevant resistance mechanisms and cancer driver alterations not found in matched tumor biopsies. Longitudinal cfDNA analysis reliably tracks tumor response, progression, and clonal evolution. Genomic sequencing coverage of plasma DNA fragments around transcription start sites shows distinct treatment-related changes and captures the expression of key transcription factors such as NEUROD1 and REST in the corresponding SCLC tumors, allowing prediction of SCLC neuroendocrine phenotypes and treatment responses.
Conclusions: These findings have important implications for non-invasive stratification and subtype-specific therapies for patients with SCLC, now treated as a single disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11185519 | PMC |
http://dx.doi.org/10.1101/2024.06.02.597054 | DOI Listing |
Eur J Radiol
September 2025
Department of Radiology, Affiliated Hospital of Hebei University, Baoding 071000, China. Electronic address:
Purpose: The present study aimed to develop a noninvasive predictive framework that integrates clinical data, conventional radiomics, habitat imaging, and deep learning for the preoperative stratification of MGMT gene promoter methylation in glioma.
Materials And Methods: This retrospective study included 410 patients from the University of California, San Francisco, USA, and 102 patients from our hospital. Seven models were constructed using preoperative contrast-enhanced T1-weighted MRI with gadobenate dimeglumine as the contrast agent.
Pathol Res Pract
September 2025
Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China. Electronic address:
Background: Dermal clear cell sarcoma (DCCS) is a rare malignant mesenchymal neoplasm. Owing to the overlaps in its morphological and immunophenotypic profiles with a broad spectrum of tumors exhibiting melanocytic differentiation, it is frequently misdiagnosed as other tumor entities in clinical practice. By systematically analyzing the clinicopathological characteristics, immunophenotypic features, and molecular biological properties of DCCS, this study intends to further enhance pathologists' understanding of this disease and provide a valuable reference for its accurate diagnosis.
View Article and Find Full Text PDFPathol Res Pract
September 2025
Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China. Electronic address:
Our research aims to ascertain the value of precursor and outgrowth lepidic in aiding the confirmation of multiple lung adenocarcinomas as separate primary lung cancers (SPLC). A total of 151 patients with metachronous multiple invasive adenocarcinomas were included in this study. Driver mutation tests(at least five genes: EGFR, ALK, KRAS, BRAF, and ROS1) were conducted on 302 tumors collected from 151 patients.
View Article and Find Full Text PDFACS Appl Bio Mater
September 2025
School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
The generation of reactive oxygen species (ROS) through nanozyme-mediated sonocatalytic therapy has demonstrated remarkable therapeutic efficacy in the field of cancer. Nevertheless, it remains a significant challenge for nanozymes with a single catalytic active center to generate sufficient ROS via Fenton or Fenton-like reactions to effectively induce tumor cell death. In order to enhance the catalytic efficacy, we devised and synthesized a multiple active centre and mitochondrial-targeted perovskite nanozyme (NCFP), doped with cobalt (Co) element, and incorporated 4-carboxybutyltriphenylphosphonium bromide (TPP) as a mitochondrial targeting marker for ultrasound (US)-assisted enzyme-like catalytic treatment of tumors.
View Article and Find Full Text PDFJMIR Cancer
September 2025
iCARE Secure Data Environment & Digital Collaboration Space, NIHR Imperial Biomedical Research Centre, London, United Kingdom.
Background: Electronic health records (EHRs) are a cornerstone of modern health care delivery, but their current configuration often fragments information across systems, impeding timely and effective clinical decision-making. In gynecological oncology, where care involves complex, multidisciplinary coordination, these limitations can significantly impact the quality and efficiency of patient management. Few studies have examined how EHR systems support clinical decision-making from the perspective of end users.
View Article and Find Full Text PDF