Defect-Rich Metastable MoS Promotes Macrophage Reprogramming in Breast Cancer: A Clinical Perspective.

Small

Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China.

Published: October 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Tumor-associated macrophages (TAMs) play a crucial function in solid tumor antigen clearance and immune suppression. Notably, 2D transitional metal dichalcogenides (i.e., molybdenum disulfide (MoS) nanozymes) with enzyme-like activity are demonstrated in animal models for cancer immunotherapy. However, in situ engineering of TAMs polarization through sufficient accumulation of free radical reactive oxygen species for immunotherapy in clinical samples remains a significant challenge. In this study, defect-rich metastable MoS nanozymes, i.e., 1T2H-MoS, are designed via reduction and phase transformation in molten sodium as a guided treatment for human breast cancer. The as-prepared 1T2H-MoS exhibited enhanced peroxidase-like activity (≈12-fold enhancement) than that of commercial MoS, which is attributed to the charge redistribution and electronic state induced by the abundance of S vacancies. The 1T2H-MoS nanozyme can function as an extracellular hydroxyl radical generator, efficiently repolarizing TAMs into the M1-like phenotype and directly killing cancer cells. Moreover, the clinical feasibility of 1T2H-MoS is demonstrated via ex vivo therapeutic responses in human breast cancer samples. The apoptosis rate of cancer cells is 3.4 times greater than that of cells treated with chemotherapeutic drugs (i.e., doxorubicin).

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202402101DOI Listing

Publication Analysis

Top Keywords

breast cancer
12
defect-rich metastable
8
metastable mos
8
mos nanozymes
8
human breast
8
cancer cells
8
cancer
6
mos
4
mos promotes
4
promotes macrophage
4

Similar Publications

The estrogen receptor (ER or ERα) remains the primary therapeutic target for luminal breast cancer, with current treatments centered on competitive antagonists, receptor down-regulators, and aromatase inhibitors. Despite these options, resistance frequently emerges, highlighting the need for alternative targeting strategies. We discovered a novel mechanism of ER inhibition that targets the previously unexplored interface between the DNA-binding domain (DBD) and ligand-binding domain (LBD) of the receptor.

View Article and Find Full Text PDF

Nitric oxide (NO) is a multifunctional signaling molecule in oncology, influencing tumor progression, apoptosis, and immune responses. In contrast, chlorambucil (Cbl), a DNA-alkylating chemotherapeutic, induces cytotoxicity through DNA damage. Here, we report a photoresponsive nanoparticle platform for sequential codelivery of NO and Cbl, where NO is released within 10 min of irradiation, followed by Cbl release within 30 min.

View Article and Find Full Text PDF

Paraneoplastic cerebellar degeneration (PCD) is a rare neurological disorder caused by tumor-mediated antibodies targeting the cerebellum, often leading to irreversible cerebellar damage. The most common antibody implicated in PCD is anti-Purkinje cell cytoplasmic antibody type-1, associated with malignancies such as breast, gynecological, and lung cancers. Symptoms often include dizziness, imbalance, progressive ataxia, and other cerebellar signs/symptoms, but early presentations may mimic acute vestibular syndrome, thus complicating diagnosis.

View Article and Find Full Text PDF

Endothelial Colony-Forming Cells (ECFCs) are recognized as key vasculogenic progenitors in humans and serve as valuable liquid biopsies for diagnosing and studying vascular disorders. In a groundbreaking study, Anceschi et al. present a novel, integrative strategy that combines ECFCs loaded with gold nanorods (AuNRs) to enhance tumor radiosensitization through localized hyperthermia.

View Article and Find Full Text PDF