98%
921
2 minutes
20
ZnO/layered carbon nanocomposites with varied sizes of ZnO nanoparticles (NPs) were synthesized by mechanical milling of mixture of ZnO NPs and carbon NPs. The NP size of ZnO was controlled with average particle sizes about 19.33, 21.87, 24.21, and 27.89 nm by varying the concentrations of carbon NPs viz 0, 2, 5, and 10 weight percent, respectively, in the mixture. Presence of carbon with ZnO in the form of composite also resulted in the enhanced shift of the band gap of ZnO due to the optical transitions in the impurity states or presence of carbon as compared to the ZnO size change alone. Additionally, the enhancement of absorbance in the visible region with an increase in carbon content was observed. Such an increase in absorbance can enhance the photocatalytic activity of ZnO NPs. Raman bands for ZnO NPs also were found to shift faster in the presence of layered carbon. The quenching of visible photoluminescence emission of ZnO NPs with an increase in concentration of carbon NPs in the composite indicated the phenomenon associated with transfer of electrons from ZnO to layered carbon helping the separation of photo-generated electrons and holes in ZnO and can lead to enhancement of the photocatalytic activity of ZnO NPs. In the photocatalytic studies, it was observed that the degradation of methylene blue (MB) dye was significantly enhanced by the increase of content of layered carbon in the nanocomposite. The sample containing 10% carbon showed the highest adsorption in dark conditions which was up to 60% of the starting strength and this was further enhanced to 88% in the presence of UV radiation. Enhanced adsorption of MB dye and the effective separation of electron-hole pairs due to charge transfer were believed to be the main causes behind such kind of improvement in the photocatalytic effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-648X/ad5922 | DOI Listing |
Mikrochim Acta
September 2025
Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 Changsheng West Road, Hengyang, 421001, Hunan, China.
We systematically evaluated the DNA adsorption and desorption efficiencies of several nanoparticles. Among them, titanium dioxide (TiO₂) nanoparticles (NPs), aluminum oxide (Al₂O₃) NPs, and zinc oxide (ZnO) NPs exhibited strong DNA-binding capacities under mild conditions. However, phosphate-mediated DNA displacement efficiencies varied considerably, with only TiO₂ NPs showing consistently superior performance.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
September 2025
A.O. Kovalevsky Institute of Biology of the Southern Seas, Russian Academy of Sciences, Sevastopol, Russia.
The emergence of new types of pollutants and the increase of anthropogenic load on the environment provoked an increased interest of researchers to study the toxic effects of pollutants on living organisms. This study is devoted to investigate the physiological response of the Black Sea phytoplankton community to the effects of ZnO, CuO and TiO nanoparticles (NPs) of different concentrations by creating in vitro model microcosms. Trends of changes in the ratio between phytoplankton groups (cyanobacteria-picoeukaryotic algae-nano-microphytoplankton), species composition, growth rates and functional state of cells under the influence of the studied nanoparticles were revealed.
View Article and Find Full Text PDFBiomater Adv
August 2025
Laboratory of Experimental Medicine, Department of PG Studies and Research in Biotechnology, Kuvempu University, Shankarghatta 577451, Karnataka, India. Electronic address:
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with poor prognosis and chemoresistance. Nano-bioconjugates, due to their enhanced surface-to-volume ratio, offer significant potential in cancer therapy. In this study, we synthesized ZnO nanoparticles (NPs) using solution combustion method and exhibited a particle size range of 20-70 nm as confirmed by TEM analysis.
View Article and Find Full Text PDFAnticancer Agents Med Chem
August 2025
Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia.
Introduction: Chemotherapy faces limitations such as toxicity and resistance, necessitating novel cancer treatments. Green-synthesized zinc oxide nanoparticles (ZnO-NPs) have attracted attention for their safety, biocompatibility, and therapeutic potential. This study investigates the anticancer efficacy of ZnO-NPs synthesized using the extracellular matrix of Aspergillus biplanus against colorectal cancer cell lines (HCT-116).
View Article and Find Full Text PDFNanotechnology
September 2025
Chemistry Department, Moscow State University, Leninskie Gory 1, Moscow, 119991, RUSSIAN FEDERATION.
Zinc oxide (ZnO) nanostructures with deposited silver (Ag) nanoparticles (NPs) exhibit exceptional opportunities for highly sensitive molecular diagnostics by means of the Surface-Enhanced Raman Scattering (SERS). Here we use the well known method of the hydrothermal synthesis of arrays of ZnO nanorods (NRs), followed with deposition of Ag-NPs by facile photochemical reduction under UV-light illumination to obtain ZnO-NRs/Ag-NPs hybrid structures with superior SERS activity. SERS spectra of a probe analyte, i.
View Article and Find Full Text PDF