Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Total organic halogen (TOX) is used to describe total amount of halogenated DBPs. Typically, once a chlor(am)inated water sample is collected, it is necessary to add a quenching agent to quench the residual disinfectant so that further reactions to form more DBPs during the holding time can be prevented. In this study, we evaluated the effects of four quenching agents: ammonium chloride (NHCl), ascorbic acid, sodium sulfite (NaSO), and sodium thiosulfate (NaSO) on the decomposition of TOX, aliphatic and aromatic halogenated DBPs under various quenching conditions (quenching time, pH, quenching ratio, temperature). The results showed that ascorbic acid had the least impact on TOX. Ascorbic acid appeared to be the most suitable quenching agent for aliphatic halogenated DBPs, especially since it could preserve more haloacetonitriles than other quenching agents. Both ascorbic acid and NaSO could be used for the analysis of aromatic halogenated DBPs. The lower pH (pH 6.0), not excessive quenching agents and lower temperature (4 ºC) were all conducive to the preservation of TOX and halogenated DBPs. Importantly, unknown TOX (UTOX) also contained significantly toxic components. It was also found that addition of quenching agents might lead to underestimation of UTOX by researchers. SYNOPSIS: The quenching agents and quenching conditions for the analysis of total organic halogen, aliphatic and aromatic halogenated DBPs formed from chlor(am)ination were investigated.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.134918DOI Listing

Publication Analysis

Top Keywords

halogenated dbps
24
quenching agents
20
aromatic halogenated
16
ascorbic acid
16
quenching conditions
12
total organic
12
organic halogen
12
aliphatic aromatic
12
quenching
11
conditions analysis
8

Similar Publications

Plantation forest areas are rapidly expanding worldwide. Forests at different stand ages exhibit distinct patterns in litterfall input, soil microbial diversity, and enzyme activity, all of which potentially affect the properties of dissolved organic matter (DOM). DOM is an important precursor of disinfection byproducts (DBPs).

View Article and Find Full Text PDF

Molecular characteristics of halogenated disinfection byproducts elucidated by Fourier transform ion cyclotron resonance mass spectrometry.

Environ Pollut

September 2025

Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan, 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China. Electronic address:

Dissolved organic matter is the main precursor for the formation of halogenated disinfection by-products (X-DBPs) during the disinfection of drinking water. However, the majority of the X-DBPs identified based on the artificially prepared water using the Suwannee River Natural Organic Matter (SRNOM) will bias the assessment of X-DBP formation potential in actual natural water. Herein, the non-targeted analysis based on ultrahigh-resolution mass spectrometry was employed to reveal the discrepancy in the molecular composition of X-DBPs and their precursors in SRNOM solution and actual authentic samples during disinfection.

View Article and Find Full Text PDF

Current antibiotic-resistant bacteria (ARB) disinfection techniques commonly rely on large dosages of oxidants, resulting in the presence of considerable amounts of residuals and toxic disinfection byproducts (DBPs) in water. Herein, we propose a highly effective ARB disinfection approach via activating an ultralow concentration (10 μM) of chlorite (ClO) by naturally abundant sunlight to generate various reactive species (i.e.

View Article and Find Full Text PDF

Molecular weight: A key factor influencing the removal efficiency of dissolved organic matter and disinfection byproducts by an aquatic plant.

Water Res

August 2025

State Key Laboratory of Water Pollution Control and Green Resource Recycling, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Ins

The occurrence of various toxic disinfection byproducts (DBPs) in disinfected municipal effluents worldwide poses threats to aquatic ecosystems. Aquatic plants are highly effective in water purification; however, the removal of toxic DBPs by aquatic plants and the associated influencing factors remain unclear. In this study, the removal profiles of dissolved organic matter (DOM) and toxic DBPs from two municipal effluents were systematically investigated using an aquatic plant Hydrocotyle vulgaris L.

View Article and Find Full Text PDF

Identification, Formation, and Toxicity of Haloimidazoles as Emerging Nitrogenous Aromatic Disinfection Byproducts in Drinking Water.

Environ Sci Technol

September 2025

State Key Laboratory of Water Pollution Control and Green Resource Recycling, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.

Identification of unknown disinfection byproducts (DBPs) remains a significant challenge in the supply of safe drinking water, as identified DBPs do not fully account for DBP-related adverse effects on human health. In this study, gas chromatography coupled with high-resolution mass spectrometry, along with multiple identification using the electron ionization and chemical ionization sources, was employed to identify six haloimidazoles as newly nitrogenous aromatic DBPs in drinking water. These compounds include 4-chloroimidazole, 4-bromoimidazole, 2,4-dibromoimidazole, 4,5-dibromoimidazole, 2,4,5-tribromoimidazole, 4-iodoimidazole, and 4,5-diiodoimidazole.

View Article and Find Full Text PDF