98%
921
2 minutes
20
Background: Selenium is essential for livestock and human health. The traditional way of adding selenium to livestock diets has limitations, and there is a growing trend to provide livestock with a safe and efficient source of selenium through selenium-enriched pasture. Therefore, this study was conducted to investigate the effects of selenium enrichment on fermentation characteristics, selenium content, selenium morphology, microbial community and in vitro digestion of silage alfalfa by using unenriched (CK) and selenium-enriched (Se) alfalfa as raw material for silage.
Results: In this study, selenium enrichment significantly increased crude protein, soluble carbohydrate, total selenium, and organic selenium contents of alfalfa silage fresh and post-silage samples, and it significantly decreased neutral detergent fiber and acid detergent fiber contents (p < 0.05). Selenium enrichment altered the form of selenium in plants, mainly in the form of SeMet and SeMeCys, which were significantly higher than that of CK (p < 0.05). Selenium enrichment could significantly increase the lactic acid content, reduce the pH value, change the diversity of bacterial community, promote the growth of beneficial bacteria such as Lactiplantibacillus and inhibit the growth of harmful bacteria such as Pantoea, so as to improve the fermentation quality of silage. The in vitro digestibility of dry matter (IVDMD), in vitro digestibility of acid detergent fibers (IVADFD) and in vitro digestibility of acid detergent fibers (IVNDFD) of silage after selenium enrichment were significantly higher than those of CK (p < 0.05).
Conclusion: This study showed that the presence of selenium could regulate the structure of the alfalfa silage bacterial community and improve alfalfa silage fermentation quality. Selenium enrichment measures can change the morphology of selenium in alfalfa silage products, thus promoting the conversion of organic selenium.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11177373 | PMC |
http://dx.doi.org/10.1186/s12870-024-05268-1 | DOI Listing |
Food Res Int
November 2025
Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China. Electronic ad
In this study, we produced instant dark tea (IDT) by liquid-state fermentation of Ziyang selenium-enriched summer-autumn tea leaves utilizing Eurotium cristatum. Then, the novel mechanism of IDT against obesity was investigated. Our results for the first time revealed that IDT could alleviate obesity by regulating the gut microbiota and promoting adipose thermogenesis.
View Article and Find Full Text PDFJ Sci Food Agric
September 2025
Key Laboratory of Egg Processing, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.
Background: Selenium and zinc elements have been proven to participate in immune regulation and infertility improvement. Their potential has been confirmed in in prostatitis and reproductive performance modulation. In this study, first the composition of selenium- and zinc-enriched duck embryo egg (SZDE) powder was analyzed, especially trace elements and oligopeptides.
View Article and Find Full Text PDFFront Plant Sci
August 2025
College of Agriculture, South China Agricultural University, Guangzhou, China.
Tobacco ( L.) is well-known as an economic crop whose quality is evaluated according to its aroma quality. Researchers have found that selenium application can increase the aroma quality of tobacco, but until now, its mechanism is still unclear.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China; Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, College of Plant Protection, Yunnan Agricultural University, Kunming, China; China France
Developing a practical strategy to enhance the quality of medicinal herb while alleviating negative plant-soil feedback (NPSF) is critical for agriculture. In this study, we investigated the effects of selenium nanoparticles (SeNPs) on Panax notoginseng through a two-year field experiment. Four treatments were established: a control (SeNPs_0) and three SeNPs concentrations (3, 5, and 10 mg/L), which were foliar-sprayed every 15 days for a total of six applications.
View Article and Find Full Text PDFFront Plant Sci
August 2025
Agricultural Resources and Environment Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China.
Plant hormones are known to regulate the uptake and distribution of mineral elements, including heavy metals, in crops. This study evaluated the effects of exogenous jasmonic acid (JA) and salicylic acid (SA), applied individually or in combination, on selenium (Se) enrichment and cadmium (Cd) mitigation in pak choi ( L.) cultivated in Se-rich and high-Cd soils.
View Article and Find Full Text PDF