Automatic cortical surface parcellation in the fetal brain using attention-gated spherical U-net.

Front Neurosci

Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.

Published: May 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cortical surface parcellation for fetal brains is essential for the understanding of neurodevelopmental trajectories during gestations with regional analyses of brain structures and functions. This study proposes the attention-gated spherical U-net, a novel deep-learning model designed for automatic cortical surface parcellation of the fetal brain. We trained and validated the model using MRIs from 55 typically developing fetuses [gestational weeks: 32.9 ± 3.3 (mean ± SD), 27.4-38.7]. The proposed model was compared with the surface registration-based method, SPHARM-net, and the original spherical U-net. Our model demonstrated significantly higher accuracy in parcellation performance compared to previous methods, achieving an overall Dice coefficient of 0.899 ± 0.020. It also showed the lowest error in terms of the median boundary distance, 2.47 ± 1.322 (mm), and mean absolute percent error in surface area measurement, 10.40 ± 2.64 (%). In this study, we showed the efficacy of the attention gates in capturing the subtle but important information in fetal cortical surface parcellation. Our precise automatic parcellation model could increase sensitivity in detecting regional cortical anomalies and lead to the potential for early detection of neurodevelopmental disorders in fetuses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11169851PMC
http://dx.doi.org/10.3389/fnins.2024.1410936DOI Listing

Publication Analysis

Top Keywords

cortical surface
16
surface parcellation
16
parcellation fetal
12
spherical u-net
12
automatic cortical
8
fetal brain
8
attention-gated spherical
8
surface
6
parcellation
6
model
5

Similar Publications

Transcranial alternating current stimulation (tACS) enables non-invasive modulation of brain activity, holding promise for cognitive research and clinical applications. However, it remains unclear how the spiking activity of cortical neurons is modulated by specific electric field (E-field) distributions. Here, we use a multi-scale computational framework that integrates an anatomically accurate head model with morphologically realistic neuron models to simulate the responses of layer 5 pyramidal cells (L5 PCs) to the E-fields generated by conventional M1-SO tACS.

View Article and Find Full Text PDF

Objective: Transcranial ultrasound (US) stimulation (TUS) has emerged as a promising technique for minimally invasive, localized, deep brain stimulation. However, indirect auditory effects during neuromodulation require careful consideration, particularly in experiments with rodents. One method to prevent auditory responses involves applying tapered envelopes to US bursts.

View Article and Find Full Text PDF

Two major protein recycling pathways have emerged as key regulators of enduring forms of synaptic plasticity, such as long-term potentiation (LTP), yet how these pathways are recruited during plasticity is unknown. Phosphatidylinositol-3-phosphate (PI(3)P) is a key regulator of endosomal trafficking and alterations in this lipid have been linked to neurodegeneration. Here, using primary hippocampal neurons, we demonstrate dynamic PI(3)P synthesis during chemical induction of LTP (cLTP), which drives coordinate recruitment of the SNX17-Retriever and SNX27-Retromer pathways to endosomes and synaptic sites.

View Article and Find Full Text PDF

Hepatic encephalopathy (HE) is a neurological condition that occurs as a complication of liver dysfunction that involves sensorimotor symptoms in addition to cognitive and behavioral changes, particularly in cases of severe liver disease or cirrhosis. Previous studies have reported spatially distributed structural and functional abnormalities related to HE, but the exact relationship between the structural and functional alterations with respect to disease progression remains unclear. In this study, we performed surface-based cortical thickness comparisons and functional connectivity (FC) analyses between three cross-sectional groups: healthy controls (HC, = 51), patients with minimal hepatic encephalopathy (MHE, = 50), patients with overt hepatic encephalopathy (OHE, = 51).

View Article and Find Full Text PDF