Deciphering an expanding array of clinical and research frailty measures.

Clin Liver Dis (Hoboken)

Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA.

Published: June 2024


Article Synopsis

  • seems that there is a reference to a figure or text that I cannot access. If you could provide the content or key points from the text, I would be happy to help summarize it in three bullet points!

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

[Figure: see text]

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11168841PMC
http://dx.doi.org/10.1097/CLD.0000000000000180DOI Listing

Publication Analysis

Top Keywords

deciphering expanding
4
expanding array
4
array clinical
4
clinical frailty
4
frailty measures
4
measures [figure
4
[figure text]
4
deciphering
1
array
1
clinical
1

Similar Publications

Vδ1 γδ T cells are key players in innate and adaptive immunity, particularly at mucosal interfaces such as the gut. An increase in circulating Vδ1 cells has long been observed in people with HIV-1, but remains poorly understood. We performed a comprehensive characterization of Vδ1 T cells in blood and duodenal intra-epithelial lymphocytes, obtained from endoscopic mucosal biopsies of 15 people with HIV-1 on antiretroviral therapy and 15 HIV-seronegative controls, in a substudy of the ANRS EP61 GALT study (NCT02906137).

View Article and Find Full Text PDF

State-of-the-Art and Future Directions in Structural Proteomics.

Mol Cell Proteomics

September 2025

Institute of Biotechnology, HiLIFE, Faculty of Medicine, University of Helsinki, Helsinki, Finland. Electronic address:

Structural proteomics has undergone a profound transformation, driven by the convergence of advanced experimental methodologies and computational innovations. Cutting-edge mass spectrometry (MS)-based approaches, including cross-linking MS (XL-MS), hydrogen-deuterium exchange MS (HDX-MS), and limited proteolysis MS (LiP-MS), now enable unprecedented insights into protein topology, conformational dynamics, and protein-protein interactions. These methods, complemented by affinity purification (AP), co-immunoprecipitation (co-IP), proximity labeling (PL), and spatial proteomics techniques, have expanded our ability to characterize the structural proteome at a systems-wide scale.

View Article and Find Full Text PDF

BioID2-Based Tau Interactome Reveals Novel and Known Protein Interactions Associated with Multiple Cellular Pathways.

J Proteome Res

September 2025

Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, Michigan 49503, United States.

Pathological inclusions composed of tau are hallmarks of neurodegenerative diseases termed tauopathies, the most common of which is Alzheimer's disease. Accumulating evidence suggests that tau is involved in a multitude of physiological functions that are regulated, in part, by direct and/or transient protein interactions. Deciphering the tau interactome is critical for understanding the physiological and pathological roles of tau.

View Article and Find Full Text PDF

Spectro-Electrochemical Insights into Electrocatalytic CO Reduction in Acidic Media through Model Catalyst Design.

J Am Chem Soc

September 2025

Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006, P. R. China.

Electrocatalytic CO reduction (eCOR) under acidic conditions is the game changer of resourceful CO utilization owing to the alleviated carbon loss but faces severe competition from the hydrogen evolution reaction (HER) that greatly curtails the electric current efficiency. Leveraging the eCOR side of the teeterboard calls for a fundamental understanding of the triphasic electrode process involving a complex arrangement of electric double layers (EDLs). Herein, a series of model catalysts with tailored cavernous parameters are fabricated to geometrically and spectroscopically decipher the competing HER and eCOR processes that engage different proton sources.

View Article and Find Full Text PDF

Deciphering enzymatic potential in metagenomic reads through DNA language models.

Nucleic Acids Res

August 2025

Department of Biology, Emory University, Atlanta, GA 30322, United States.

Microbial communities drive essential global processes, yet much of their functional potential remains unexplored. Metagenomics stands to elucidate this microbial "dark matter" by directly sequencing the microbial community DNA from environmental samples. However, the exploration of metagenomic sequences is mostly limited to establishing their similarity to curated reference sequences.

View Article and Find Full Text PDF