Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Sulfide- and halide-based ceramic ionic conductors exhibit comparable ionic conductivity with liquid electrolytes and are candidates for high-energy- and high-power-density all-solid-state batteries. These materials, however, are inherently brittle, making them unfavorable for applications. Here, we report a mechanically enhanced composite Na conductor that contains 92.5 wt % of sodium thioantimonate (NaSbS, NSS) and 7.5 wt % of sodium carboxymethyl cellulose (CMC); the latter serves as the binder and an electrochemically inert encapsulation layer. The ceramic and binder constituents were integrated at the particle level, providing ceramic NSS-level Na conductivity in the NSS-CMC composite. The more than 5-fold decrease of electrolyte thickness obtained in NSS-CMC composite provided a 5-fold increase in Na conductance compared to NSS ceramic pellets. As a result of the CMC encapsulation, this NSS-CMC composite shows increased moisture resistivity and electrochemical stability, which significantly promotes the cycling performance of NSS-based solid-state batteries. This work demonstrates a well-controlled, orthogonal process of ceramic-rich, composite electrolyte processing: independent streams for ceramic particle formation along with binder encapsulation in a solvent-assisted environment. This work also provides insights into the interplay among the solvent, the polymeric binder, and the ceramic particles in composite electrolyte synthesis and implies the critical importance of identifying the appropriate solvent/binder system for precise control of this complicated process.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.4c03910DOI Listing

Publication Analysis

Top Keywords

composite electrolyte
12
nss-cmc composite
12
mechanically enhanced
8
ceramic
6
composite
6
cellulose-encapsulated composite
4
electrolyte
4
electrolyte design
4
design chemically
4
chemically mechanically
4

Similar Publications

Molecular Engineering Empowers Phenanthraquinone Organic Cathodes with Exceptional Cycling Stability for Lithium- and Aqueous Zinc-Ion Batteries.

Adv Sci (Weinh)

September 2025

School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, State Key Laboratory of Advanced Materials for Intelligent Sensing, Tianjin University, Tianjin, 300072, China.

Organic electrode materials have garnered great attention in recent years, owing to their resource sustainability, structural diversity, and superior compatibility with various ionic species. Among them, quinone-based compounds have attracted particular interest. Notably, compared with para-quinone analogs (e.

View Article and Find Full Text PDF

A CoO/AgMoO/CeOternary nanocomposites photocatalyst was successfully synthesized through a straightforward ethanol-assisted chemical method. Comprehensive characterization of its structural and optical properties was conducted using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectroscopy (UV-DRS), and photoluminescence (PL) analysis. XRD analysis confirmed the presence of CoO, AgMoO and CeO in the ternary composite sample.

View Article and Find Full Text PDF

The electrolyte-electrode interface serves as the foundation for a myriad of chemical and physical processes. In battery chemistry, the formation of a well-known solid-electrolyte interphase (SEI) plays a pivotal role in ensuring the reversible operations of rechargeable lithium-ion batteries (LIBs). However, characterizing the precise chemical composition of the low crystallinity and highly sensitive SEI presents a formidable challenge.

View Article and Find Full Text PDF

New horizons in synthesis, functionalization, and deposition of advanced materials using multifunctional organic alkalizers.

Adv Colloid Interface Sci

September 2025

Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton L8S 4L8, Ontario, Canada; School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton L8S 4L8, Ontario, Canada. Electronic address:

This review describes new strategies in the use of multifunctional organic alkalizers (OA) for the fabrication of advanced functional materials. OA facilitate solubilization and delivery of poorly solubilized drugs through the formation of drug-OA complexes and supramolecular gels. OA are applied for the synthesis of materials for biomedical, energy storage, catalytic, photovoltaic, sensor, and electronic applications.

View Article and Find Full Text PDF

Ultra-High Zinc Utilization Enabled by MXene Anode for Flexible Dual-Plating Zn-Br Microbatteries.

J Phys Chem Lett

September 2025

College of Materials Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, P. R. China.

Aqueous zinc-ion microbatteries exhibit promising prospects for wearable devices due to their high safety and cost-effectiveness but face challenges such as low energy density and short cycle life. To address these challenges, a dual-plating flexible Zn-Br microbattery was developed using freestanding MXene films as a zinc metal free anode. The MXene anode retains no redundant Zn, as Zn from the electrolyte undergoes deposition/stripping reactions on its substrate, thereby eliminating the necessity for excess zinc.

View Article and Find Full Text PDF