98%
921
2 minutes
20
Unlabelled: Systemic inflammation has been implicated in the development and progression of neurodegenerative conditions such as cognitive impairment and dementia. Recent clinical studies indicate an association between sepsis, endothelial dysfunction, and cognitive decline. However, the investigations of the role and therapeutic potential of the cerebral microvasculature in systemic inflammation-induced cognitive dysfunction have been limited by the lack of standardized experimental models for evaluating the alterations in the cerebral microvasculature and cognition induced by the systemic inflammatory response. Herein, we validated a mouse model of endotoxemia that recapitulates key pathophysiology related to sepsis-induced cognitive dysfunction, including the induction of an acute systemic hyperinflammatory response, blood-brain barrier (BBB) leakage, neurovascular inflammation, and memory impairment after recovery from the systemic inflammatory response. In the acute phase, we identified novel molecular (e.g. upregulation of plasmalemma vesicle associated protein, a driver of endothelial permeability, and the pro-coagulant plasminogen activator inhibitor-1, PAI-1) and functional perturbations (i.e., albumin and small molecule BBB leakage) in the cerebral microvasculature along with neuroinflammation. Remarkably, small molecule BBB permeability, elevated levels of PAI-1, intra/perivascular fibrin/fibrinogen deposition and microglial activation persisted 1 month after recovery from sepsis. We also highlight molecular neuronal alterations of potential clinical relevance following systemic inflammation including changes in neurofilament phosphorylation and decreases in postsynaptic density protein 95 and brain-derived neurotrophic factor suggesting diffuse axonal injury, synapse degeneration and impaired neurotrophism. Our study serves as a standardized model to support future mechanistic studies of sepsis-associated cognitive dysfunction and to identify novel endothelial therapeutic targets for this devastating condition.
Significance: The limited knowledge of how systemic inflammation contributes to cognitive decline is a major obstacle to the development of novel therapies for dementia and other neurodegenerative diseases. Clinical evidence supports a role for the cerebral microvasculature in sepsis-induced neurocognitive dysfunction, but the investigation of the underlying mechanisms has been limited by the lack of standardized experimental models. Herein, we optimized a mouse model that recapitulates important pathophysiological aspects of systemic inflammation-induced cognitive decline and identified key alterations in the cerebral microvasculature associated with cognitive dysfunction. Our study provides a reliable experimental model for mechanistic studies and therapeutic discovery of the impact of systemic inflammation on cerebral microvascular function and the development and progression of cognitive impairment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11160628 | PMC |
http://dx.doi.org/10.1101/2024.05.28.596050 | DOI Listing |
Ultrasonics
August 2025
College of Biomedical Engineering, Fudan University, Shanghai 200438, China; State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai 200438, China; Poda Medical Technology Co., Ltd., Shanghai 200433, China. Electronic address:
Transcranial ultrasound localization microscopy (t-ULM) is faced with challenges posed by the skull, including acoustic attenuation and phase aberrations. There is a significant request for an efficient aberration correction method achieving a great balance between computational complexity and accuracy. In this study, the ray theory is first applied to in-vivo transcranial imaging to calculate the traveltime table in the inhomogeneous medium model of the imaging region.
View Article and Find Full Text PDFJ Biomed Opt
February 2025
University of Cambridge, Electrical Division, Department of Engineering, Cambridge, United Kingdom.
Significance: Broadband near-infrared spectroscopy (bNIRS) can simultaneously monitor several chromophores, including the oxidative state of cytochrome c-oxidase (oxCCO), an oxygen metabolism biomarker, the activity of which is altered in Alzheimer's disease. Being a portable and noninvasive neuromonitoring technique, bNIRS could provide accessibility to brain-specific biomarkers and aid in the dementia diagnostic pathway.
Aim: We use bNIRS-recorded functional hemodynamic and oxCCO changes to assess their relevance in Alzheimer's disease diagnosis.
Neuroscience
September 2025
Department of Life Sciences and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, UP 208024, India. Electronic address:
Hydrogen sulfide (HS) is an endogenously produced gasotransmitter that has garnered growing attention for its critical roles in cellular signalling and brain function. It regulates NMDA receptors during long-term potentiation, a fundamental mechanism underlying memory consolidation and influences neurotransmission and essential neurophysiological functions. HS is synthesized by three enzymes: cystathionine γ-lyase (CSE) and cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (MST) within the cell.
View Article and Find Full Text PDFNeurology
September 2025
Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, United Kingdom.
Background And Objectives: Cerebrovascular reactivity (CVR) is an indicator of cerebrovascular health, and its signature in familial frontotemporal dementia (FTD) remains unknown. The primary aim was to investigate CVR in genetic FTD using an fMRI index of vascular contractility termed resting-state fluctuation amplitudes (RSFAs) and to assess whether RSFA differences are moderated by age. A secondary aim was to study the relationship between RSFA and cognition.
View Article and Find Full Text PDFSci Prog
September 2025
Hangzhou Kang Ming Information Technology Co., Ltd, Zhejiang, China.
ObjectiveIschemic stroke, resulting from the interruption of blood supply to the brain, leads to cerebral ischemia, hypoxia, and necrosis, and is a prevalent disease characterized by high incidence, mortality, and disability rates. This study investigates the protective effects of ischelium on cerebral ischemia-reperfusion injury in a rat model, along with the potential mechanisms of action.MethodsWe established a rat cerebral ischemia-reperfusion model and administered different doses of ischelium as intervention across treatment groups.
View Article and Find Full Text PDF