Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Temporal interference stimulation (TIS) uses two pairs of conventional transcranial alternating current stimulation (tACS) electrodes, each with a different frequency, to generate a time-varying electric field (EF) envelope (EFE). The EFE focality in primary somatosensory and motor cortex areas of a standard human brain was computed using newly defined linear alignment montages. Sixty head volume conductor models constructed from magnetic resonance images were considered to evaluate interindividual variability. Six TIS and two tACS electrode montages were considered, including linear and rectangular alignments. EFEs were computed using the scalar-potential finite-difference method. The computed EFE was projected onto the standard brain space for each montage. Computational results showed that TIS and tACS generated different EFE and EF distributions in postcentral and precentral gyri regions. For TIS, the EFE amplitude in the target areas had lower variability than the EF strength of tACS. However, bipolar tACS montages showed higher focality in the superficial postcentral and precentral gyri regions than in TIS. TIS generated greater EFE penetration than bipolar tACS at depths <5-10 mm below the brain surface. From group-level analysis, tACS with a bipolar montage was preferred for targets <5-10 mm in depth (gyral crowns) and TIS for deeper targets. TIS with a linear alignment montage could be an effective method for deep structures and sulcal walls. These findings provide valuable insights into the choice of TIS and tACS for stimulating specific brain regions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2024.108697DOI Listing

Publication Analysis

Top Keywords

electric field
8
field envelope
8
focality superficial
8
linear alignment
8
temporal interference
8
interference stimulation
8
tis tacs
8
postcentral precentral
8
precentral gyri
8
gyri regions
8

Similar Publications

EFMouse: A toolbox to model stimulation-induced electric fields in the mouse brain.

PLoS Comput Biol

September 2025

Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey, United States of America.

Research into the mechanisms underlying neuromodulation by tES using in-vivo animal models is key to overcoming experimental limitations in humans and essential to building a detailed understanding of the in-vivo consequences of tES. Insights from such animal models are needed to develop targeted and effective therapeutic applications of non-invasive brain stimulation in humans. The sheer difference in scale and geometry between animal models and the human brain contributes to the complexity of designing and interpreting animal studies.

View Article and Find Full Text PDF

Force prediction is crucial for functional rehabilitation of the upper limb. Surface electromyography (sEMG) signals play a pivotal role in muscle force studies, but its non-stationarity challenges the reliability of sEMG-driven models. This problem may be alleviated by fusion with electrical impedance myography (EIM), an active sensing technique incorporating tissue morphology information.

View Article and Find Full Text PDF

The challenge of photocatalytic hydrogen production has motivated a targeted search for MXenes as a promising class of materials for this transformation because of their high mobility and high light absorption. High-throughput screening has been widely used to discover new materials, but the relatively high cost limits the chemical space for searching MXenes. We developed a deep-learning-enabled high-throughput screening approach that identified 14 stable candidates with suitable band alignment for water splitting from 23 857 MXenes.

View Article and Find Full Text PDF

Transcranial alternating current stimulation (tACS) enables non-invasive modulation of brain activity, holding promise for cognitive research and clinical applications. However, it remains unclear how the spiking activity of cortical neurons is modulated by specific electric field (E-field) distributions. Here, we use a multi-scale computational framework that integrates an anatomically accurate head model with morphologically realistic neuron models to simulate the responses of layer 5 pyramidal cells (L5 PCs) to the E-fields generated by conventional M1-SO tACS.

View Article and Find Full Text PDF

Purpose: To evaluate the impact of MRP inhibition by MK571 on prostate hypercontractility in diet-induced obesity, based on the hypothesis that this intervention enhances intracellular cAMP and cGMP signaling.

Methods: Adult C57BL/6 mice were divided into three groups: (i) lean, (ii) obese, and (iii) obese + MK571 (5 mg/kg/day, 14 days). The prostate was isolated for immunohistochemistry, biochemistry and functional assays.

View Article and Find Full Text PDF