A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

An approach for estimating microbial growth and chlorinated ethenes biotransformation in groundwater based on discrete observations. | LitMetric

An approach for estimating microbial growth and chlorinated ethenes biotransformation in groundwater based on discrete observations.

Environ Pollut

Department of Environmental Science and Engineering, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China. Electronic address:

Published: September 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The bioremediation of chlorinated ethenes (CEs) contaminated groundwater is attracting increasingly attention in practical remediation projects. However, modelling of microbial metabolic processes under the constraints of substrate and environmental factors is inadequate. This study developed a new kinetic model, which incorporated the logistic model and Dual-Monod kinetic to represent the interaction between the controlled microbial growth and the bioavailable substrates in CE-contaminated groundwater. The proposed model was based on discrete observations to simulate microbial growth under the constraints of substrate and environmental conditions, reducing the amount of observational data required for the model. Meanwhile, the proposed model introduced two new kinetic parameters, the effective specific growth rate μ and the real self-limiting coefficient of microbial growth k, to simplified the number of independent parameters. A parameter estimation method based on the quasi-Newton's algorithm for the proposed model was also developed. The model was validated based on the hypothetical data, experimental results, and a published dataset, demonstrated the successful simulation of microbial growth and the sequential biodegradation of PCE in groundwater systems (*E < 0.3). The monitoring duration and the sampling schedule have significant impacts on estimating the biological parameters, and large errors would be induced when the data from the periods of extremely low substrate concentration or microbial growth decline were involved in parameter estimation. The research suggested that the proposed kinetic model provided a new insight to express the limitation of microbial population growth due to the available substrates and environmental factors, and is hoping to be applied in actual CE-contaminated sites.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2024.124332DOI Listing

Publication Analysis

Top Keywords

microbial growth
24
proposed model
12
microbial
8
growth
8
chlorinated ethenes
8
based discrete
8
discrete observations
8
constraints substrate
8
substrate environmental
8
environmental factors
8

Similar Publications