Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The escalating production and improper disposal of petrochemical-based plastics have led to a global pollution issue with microplastics (MPs), which pose a significant ecological threat. Biobased and biodegradable plastics are believed to mitigate plastic pollution. However, their environmental fate and toxicity remain poorly understood. This study compares the in vivo effects of different types of MPs, poly(butylene adipate-co-terephthalate) as a biodegradable plastic, polylactic acid (PLA) as a biobased plastic, β-cyclodextrin-grafted PLA as a modified biobased plastic, and low density polyethylene as the reference petrochemical-based plastic, on the key aquatic primary consumer Diaphanosoma celebensis. Exposure to MPs resulted in significant reproductive decline, with comparable effects observed irrespective of MP type or concentration. Exposure to MPs induced distinct responses in redox stress, with transcriptional profiling revealing differential gene expression patterns that indicate varied cellular responses to different types of MPs. ATP-binding cassette transporter activity assays demonstrated altered efflux activity, mainly in response to modified biobased and biodegradable MPs. Overall, this study highlights the comparable in vivo and in vitro effects of biobased, biodegradable, and petrochemical-based MPs on aquatic primary consumers, highlighting their potential ecological implications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.173747DOI Listing

Publication Analysis

Top Keywords

biobased biodegradable
16
modified biobased
12
biodegradable petrochemical-based
8
diaphanosoma celebensis
8
types mps
8
biobased plastic
8
aquatic primary
8
exposure mps
8
biobased
7
mps
7

Similar Publications

The Green Cochlea.

Braz J Otorhinolaryngol

September 2025

Clinical Research Department, MED-EL GmbH, Innsbruck, Austria.

Objectives: Healthcare systems contribute significantly to global greenhouse gas emissions through energy consumption and waste generation. This study aims to explore strategies to make cochlear implantation processes more environmentally sustainable and aligned with the United Nations' Sustainable Development Goals.

Methods: We examined various approaches including the use of bio-based and biodegradable materials, sustainable energy solutions, greener anesthetic practices, effective waste separation and recycling in operating rooms, and patient-centered strategies such as reducing travel and promoting early activation and fitting of cochlear implants.

View Article and Find Full Text PDF

Sustainable bio-based film based on chitosan resin crosslinking with tannin, phytic acid and octadecylamine for food packaging application.

Int J Biol Macromol

September 2025

Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, People's Republic of China. Electronic address:

Chitosan and tannin are both promising renewable materials for food packaging; however, their effectiveness is limited by incomplete interactions between them. Therefore, phytic acid and octadecylamine were employed to create chitosan-tannin-phytic acid-octadecylamine (CTPO) films that are flame-retardant, UV-resistant, antibacterial and hydrophobic for food packaging applications. The findings indicate that the CTPO film exhibited excellent hydrophobicity and mechanical properties, with a water contact angle of 133.

View Article and Find Full Text PDF

Fungi are pivotal in transitioning to a bio-based, circular economy due to their ability to transform organic material into valuable products such as organic acids, enzymes, and drugs. Mucor circinelloides is a model organism for studying lipogenesis and is particularly promising for its metabolic capabilities in producing oils like TAGs and carotenoids, influenced by environmental factors such as nutrient availability. Notably, strains VI04473 and FRR5020 have been identified for their potential in producing single-cell oils and carotenoids, respectively.

View Article and Find Full Text PDF

Soluble dietary fibers (SDFs) are recognized for their health benefits through their fermentation and gut microbiota modulation. Previous studies focused on individual SDFs without sufficient structural information and a comparative analysis using different SDFs on microbiota composition and function is lacking. The present study aimed to determine key structural features of different SDFs, including soluble resistant starch (SRS), inulin (INU), four structurally diverse pectins (PS1 to PS4), one pectic derivative (PS5) and larch arabinogalactan (AG).

View Article and Find Full Text PDF

Phytic acid and melamine-modified microcrystalline cellulose as effective flame retardants in polylactic acid composites.

Carbohydr Polym

November 2025

School of Chemistry and Chemical Engineering, State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China. Electronic address:

This study introduces a novel bio-based flame retardant, MCC-GMA-PA-MEL, synthesized from microcrystalline cellulose (MCC) modified with phytic acid (PA) and melamine (MEL). Characterization of the resulting composites revealed a significant enhancement in PLA crystallinity to 35.9 %, driven by improved molecular mobility and heterogeneous nucleation effects.

View Article and Find Full Text PDF