Digest: How environmental light conditions shape the evolution of visual systems in birds.

Evolution

Committee of Evolutionary Biology, Biological Sciences Division, The University of Chicago, Chicago, IL, United States.

Published: July 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

How do varying environmental light conditions influence the evolution of avian visual systems? Fröhlich et al. (2024) demonstrate that nocturnal birds evolved broader corneas and slightly longer axial lengths than their diurnal counterparts, increasing light capture efficiency. Nocturnal species also tended to maintain or reduce the size of brain regions responsible for vision, i.e., the optic tectum and the visual wulst. These results highlight adaptive trends in nocturnal species, where evolutionary improvement in low-light performance of eyes may be accompanied by compromised brain function.

Download full-text PDF

Source
http://dx.doi.org/10.1093/evolut/qpae085DOI Listing

Publication Analysis

Top Keywords

environmental light
8
light conditions
8
nocturnal species
8
digest environmental
4
conditions shape
4
shape evolution
4
evolution visual
4
visual systems
4
systems birds
4
birds varying
4

Similar Publications

Photofunctionalization of Light Alkanes by FeO/BCN at 12 °C.

J Am Chem Soc

September 2025

State Key Laboratory of Chemistry for NBC Hazards Protection, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China.

The activation of methane and other gaseous hydrocarbons at low temperature remains a substantial challenge for the chemistry community. Here, we report an anaerobic photosystem based on crystalline borocarbonitride (BCN) supported Fe-O nanoclusters, which can selectively functionalize C-H bonds of methane, ethane, and higher alkanes to value-added organic chemicals at 12 °C. Scanning transmission electron microscopy and X-ray absorption spectroscopy corroborated the ultrafine FeOOH and FeO species in Fe-O clusters, which enhanced the interfacial charge transfer/separation of BCN as well as the chemisorption of methane.

View Article and Find Full Text PDF

Z-scheme Heterojunction on TS-1 Zeolite Boosting Ultrafast Visible-Light-Driven Degradation of Cr(VI) and Tetracycline.

Inorg Chem

September 2025

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.

Photocatalysis has emerged as a promising strategy to address water pollution caused by heavy metals and antibiotics. Zeolites exhibit significant potential in petrochemical catalysis; however, the development of zeolite-based photocatalysts remains a critical challenge for researchers. Herein, a novel Z-scheme heterojunction was designed and fabricated on the titanium-silicon zeolite TS-1 by modifying g-CN via a simple calcination process.

View Article and Find Full Text PDF

Despite periods of permanent darkness and extensive ice coverage in polar environments, photosynthetic ice diatoms display a remarkable capability of living inside the ice matrix. How these organisms navigate such hostile conditions with limited light and extreme cold remains unknown. Using a custom subzero temperature microscope during an Arctic expedition, we present the finding of motility at record-low temperatures in a Eukaryotic cell.

View Article and Find Full Text PDF

Glyphosate, a widely used herbicide, has raised concerns regarding its impact on human health and the environment due to its widespread and excessive use. Adverse effects on the immune system have been reported. In this study, 26 vineyard workers in Veneto vineyards were examined before and after glyphosate applications to investigate possible immune parameter changes.

View Article and Find Full Text PDF

Age-related cataract (ARC) represents a major global cause of visual impairment, with ultraviolet B (UVB) radiation recognized as a primary contributor to oxidative damage in the lens. FOXO3, a key regulator of aging, apoptosis, and oxidative stress-induced cell death, was investigated for its role and regulatory mechanisms in UVB-induced oxidative stress using human lens epithelial cells (HLECs). A progressive decrease in FOXO3 protein expression was observed in the lens capsules across various stages of cataract progression, as well as in UVB-exposed animal models and UVB-treated HLECs.

View Article and Find Full Text PDF