98%
921
2 minutes
20
The efficacy of anthracycline-based chemotherapeutics, which include doxorubicin and its structural relatives daunorubicin and idarubicin, remains almost unmatched in oncology, despite a side effect profile including cumulative dose-dependent cardiotoxicity, therapy-related malignancies and infertility. Detoxifying anthracyclines while preserving their anti-neoplastic effects is arguably a major unmet need in modern oncology, as cardiovascular complications that limit anti-cancer treatment are a leading cause of morbidity and mortality among the 17 million cancer survivors in the U.S. In this study, we examined different clinically relevant anthracycline drugs for a series of features including mode of action (chromatin and DNA damage), bio-distribution, anti-tumor efficacy and cardiotoxicity in pre-clinical models and patients. The different anthracycline drugs have surprisingly individual efficacy and toxicity profiles. In particular, aclarubicin stands out in pre-clinical models and clinical studies, as it potently kills cancer cells, lacks cardiotoxicity, and can be safely administered even after the maximum cumulative dose of either doxorubicin or idarubicin has been reached. Retrospective analysis of aclarubicin used as second-line treatment for relapsed/refractory AML patients showed survival effects similar to its use in first line, leading to a notable 23% increase in 5-year overall survival compared to other intensive chemotherapies. Considering individual anthracyclines as distinct entities unveils new treatment options, such as the identification of aclarubicin, which significantly improves the survival outcomes of AML patients while mitigating the treatment-limiting side-effects. Building upon these findings, an international multicenter Phase III prospective study is prepared, to integrate aclarubicin into the treatment of relapsed/refractory AML patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11149191 | PMC |
http://dx.doi.org/10.1186/s12943-024-02034-7 | DOI Listing |
Leukemia
September 2025
Department of Hematology and Hematopoietic Cell Transplantation and Gehr Family Center for Leukemia Research, City of Hope Comprehensive Cancer Center, Duarte, CA, USA.
Venetoclax plus azacitidine is recognized as standard of care for patients with acute myeloid leukemia (AML) ineligible for intensive chemotherapy (IC). However, some patients may still not be treated with venetoclax combinations due to frailty concerns. We evaluated efficacy and safety of venetoclax plus azacitidine vs.
View Article and Find Full Text PDFSemin Hematol
August 2025
Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM, gGmbH), Heidelberg, Germany.
Acute myeloid leukemia (AML) is an aggressive blood cancer in which disease initiation and relapse are driven by leukemic cells with stem-like properties, known as leukemic stem cells (LSCs). The LSC compartment is highly heterogenous and this contributes to differences in therapy response. This heterogeneity is determined by genetic and nongenetic factors including somatic mutations, the cell of origin, transcriptional and epigenetic states as well as phenotypic plasticity.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Haematology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia.
Acute myeloid leukaemia-normal karyotype (AML-NK) exhibits heterogeneity in expression profiles, influencing the treatment response and survival outcome. Transcriptome sequencing allows a comprehensive analysis of differentially expressed genes (DEGs) and dysregulated pathways in AML-NK, shedding light on the molecular mechanisms and their implications in patients' management. DEG analyses utilising transcriptome sequencing were conducted using a customised DESeq2 pipeline on 51 AML-NK patients at diagnosis (DX), 12 AML-NK patients who attained first remission (CR1) and 12 healthy controls.
View Article and Find Full Text PDFCurr Opin Hematol
August 2025
Hematopoietic Stem Cell Transplantation Program. Hematology Department Pontificia Universidad Católica de Chile Red de Salud Christus UC.
Purpose Of Review: Acute myeloid leukemia (AML) is a biologically diverse disease that has undergone significant transformation in recent years. The rapid pace of discovery in molecular genetics, disease classification, and therapeutic development has reshaped how we approach diagnosis and treatment. This review aims to provide a timely and relevant synthesis of these advances, offering clinicians and researchers an updated perspective on AML as of 2025.
View Article and Find Full Text PDFFront Oncol
August 2025
Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia.
mutations drive oncogenesis and therapeutic resistance in myelodysplastic syndromes (MDSs) and acute myeloid leukemia (AML), impairing p53-regulated functions such as apoptosis, immune surveillance, and genomic stability, leading to immune evasion and metabolic reprogramming. The tumor microenvironment in -mutated MDS and AML fosters leukemic progression through cytokine dysregulation, altered metabolism, and immune suppression. Current therapies, including chemotherapy and hypomethylating agents, offer limited efficacy, resulting in poor overall survival rates for these high-risk patients.
View Article and Find Full Text PDF