Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Initial indications propose that repetitive transcranial magnetic stimulation (rTMS) could mitigate clinical manifestations in patients with autism spectrum disorder (ASD). Nevertheless, the precise mechanisms responsible for these therapeutic and behavioral outcomes remain elusive. We examined alterations in effective connectivity induced by rTMS using concurrent transcranial magnetic stimulation and electroencephalography (TMS-EEG) in children with ASD. TMS-EEG data were acquired from 12 children diagnosed with ASD both before and following rTMS treatment. The rTMS intervention regimen included delivering 5-s trains at a frequency of 15 Hz, with 10-min intervals between trains, targeting the left parietal lobe. This was conducted on each consecutive weekday over 3 weeks, totaling 15 sessions. The dynamic EEG network analysis revealed that following the rTMS intervention, long-range feedback connections within the brains of ASD patients were strengthened (e.g., frontal to parietal regions, frontal to occipital regions, and frontal to posterior temporal regions), and short-range connections were weakened (e.g., between the bilateral occipital regions, and between the occipital and posterior temporal regions). In alignment with alterations in network connectivity, there was a corresponding amelioration in fundamental ASD symptoms, as assessed through clinical scales post-treatment. According to our findings, people with ASD may have increased long-range frontal-posterior feedback connection on application of rTMS to the parietal lobe.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11140796PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e31746DOI Listing

Publication Analysis

Top Keywords

transcranial magnetic
12
magnetic stimulation
12
repetitive transcranial
8
effective connectivity
8
autism spectrum
8
spectrum disorder
8
rtms intervention
8
parietal lobe
8
regions frontal
8
occipital regions
8

Similar Publications

Background: The causal relationship between migraines and patent foramen ovale (PFO) remains controversial, and a major unresolved question is how to define migraines attributable to PFO. Thus, this study aimed to determine if brain lesions could be a potential indicator of PFO-related migraines.

Methods: Consecutive migraine patients from 2017 to 2019 who underwent transthoracic echocardiography or transcranial Doppler examination with an agitated saline contrast injection were assessed for right-to-left shunts.

View Article and Find Full Text PDF

Background: Spinal Cord Injury (SCI) leads to partial or complete sensorimotor loss because of the spinal lesions caused either by trauma or any pathological conditions. Rehabilitation, one of the therapeutic methods, is considered to be a significant part of therapy supporting patients with spinal cord injury. Newer methods are being incorporated, such as repetitive Transcranial Magnetic Stimulation (rTMS), a Non-Invasive Brain Stimulation (NIBS) technique to induce changes in the residual neuronal pathways, facilitating cortical excitability and neuroplasticity.

View Article and Find Full Text PDF

Predictive and mechanistic biomarkers of treatment response to Transcranial Magnetic Stimulation (TMS) in Psychiatric and Neurocognitive Disorders, identified via TMS-Electroencephalography (EEG) and Resting-State EEG: A systematic review.

J Affect Disord

September 2025

Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada; Peter Boris Centre for Addictions Research, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada; Seniors Mental Health Program, Department of Psychiatry and Neurosciences, McMaster University, Hamil

Electroencephalography (EEG) is a comparatively inexpensive and non-invasive recording technique of neural activity, making it a valuable tool for biomarker discovery in transcranial magnetic stimulation (TMS). This systematic review aimed to examine mechanistic and predictive biomarkers, identified through TMS-EEG or resting-state EEG, of treatment response to TMS in psychiatric and neurocognitive disorders. Nineteen articles were obtained via Embase, APA PsycInfo, MEDLINE, and manual search; conditions included, unipolar depression (k = 13), Alzheimer's disease (k = 3), bipolar depression (k = 2), and schizophrenia (k = 2).

View Article and Find Full Text PDF

Repetitive transcranial magnetic stimulation alleviates radiation-induced brain injury in rats: involving the inhibition of ferroptosis.

Neurosci Lett

September 2025

Institute of Neuroscience & Department of Physiology, Hengyang Medical School, University of South China, Hengyang 421001 Hunan, PR China; NHC Key Laboratory of Neurodegenerative Disease (University of South China), Hengyang 421001 Hunan, PR China; The Second Affiliated Hospital, Brain Disease Resea

Radiation-induced brain injury (RIBI) is a prevalent complication following radiotherapy for head and neck tumors, and its effective therapeutic strategies are lacking. Ferroptosis, an iron-dependent cell death, has recently emerged as an important mechanism of radiation-induced cell death. Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive neuro-interventional technique with antioxidant and neuroprotective properties.

View Article and Find Full Text PDF

Purpose: Resection of glioblastomas infiltrating the motor cortex and corticospinal tract (CST) is often linked to increased perioperative morbidity. Navigated transcranial magnetic stimulation (nTMS) motor mapping has been advocated to increase patient safety in these cases. The additional impact of patient frailty on overall outcome after resection of cases with increased risk for postoperative motor deficits as identified with nTMS needs to be investigated.

View Article and Find Full Text PDF