98%
921
2 minutes
20
Background: Schizophrenia (SCZ) is a serious mental illness with complex pathology, including abnormalities in the glutamate system. Glutamate is rapidly removed from the synapse by excitatory amino acid transporters (EAATs). Changes in the expression and localization of the primary glutamate transporter EAAT2 are found in the brain in central nervous system (CNS) disorders including SCZ. We hypothesize that neuronal expression and function of EAAT2 are increased in the frontal cortex in subjects diagnosed with SCZ.
Study Design: EAAT2 protein expression and glutamate transporter function were assayed in synaptosome preparations from the dorsolateral prefrontal cortex (DLPFC) of SCZ subjects and age- and sex-matched nonpsychiatrically ill controls. EAAT2 splice variant transcript expression was assayed in enriched populations of neurons and astrocytes from the DLPFC. Pathway analysis of publicly available transcriptomic datasets was carried out to identify biological changes associated with EAAT2 perturbation in different cell types.
Results: We found no significant changes in EAAT2 protein expression or glutamate uptake in the DLPFC in SCZ subjects compared with controls (n = 10/group). Transcript expression of EAAT2 and signaling molecules associated with EAAT2b trafficking (CaMKIIa and DLG1) were significantly altered in enriched populations of astrocytes and pyramidal neurons (P < .05) in SCZ (n = 16/group). These changes were not associated with antipsychotic medications. Pathway analysis also identified cell-type-specific enrichment of biological pathways associated with perturbation of astrocyte (immune pathways) and neuronal (metabolic pathways) EAAT2 expression.
Conclusions: Overall, these data support the growing body of evidence for the role of dysregulation of the glutamate system in the pathophysiology of SCZ.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11908862 | PMC |
http://dx.doi.org/10.1093/schbul/sbae092 | DOI Listing |
Biosci Biotechnol Biochem
September 2025
College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan.
Selenium is an essential trace element in many organisms but becomes toxic at elevated concentrations. At moderately increased, non-lethal levels, selenite triggers both selenium utilization and stress responses in microorganisms. However, the thresholds of such responses in archaea remain poorly understood.
View Article and Find Full Text PDFJ Anim Sci
September 2025
Centre for Veterinary Systems Transformation and Sustainability, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Vienna 1210, Austria.
It is helpful for diagnostic purposes to improve our current knowledge of gut development and serum biochemistry in young piglets. This study investigated serum biochemistry, and gut site-specific patterns of short-chain fatty acids (SCFA) and expression of genes related to barrier function, innate immune response, antioxidative status and sensing of fatty and bile acids in suckling and newly weaned piglets. The experiment consisted of two replicate batches with 10 litters each.
View Article and Find Full Text PDFFASEB J
September 2025
Department of Hematology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China.
Epilepsy is a common chronic nervous system disease that threatens human health. However, the role of FOXC1 and its relations with pyroptosis have not been fully studied in epilepsy. Sprague-Dawley rats were obtained for constructing temporal lobe epilepsy (TLE) models.
View Article and Find Full Text PDFPhotosynth Res
September 2025
College of Life Sciences, Shanghai Normal University, Shanghai, 200235, China.
Euglena sanguinea (Ehrenberg 1831) is one of the earliest reported species within the genus Euglena. Its prolific proliferation leading to red algal bloom has garnered significant scientific attention due to its ecological and environmental impacts. Despite this, research on E.
View Article and Find Full Text PDFArch Microbiol
September 2025
College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
Klebsiella oxytoca is a N-fixing bacterium whose nif (nitrogen fixation) gene expression is controlled by the two antagonistic regulatory proteins NifA and NifL encoded by the nifLA operon. NifA is a transcriptional activator, while NifL inhibits the transcriptional activity of NifA. In order to develop an improved K.
View Article and Find Full Text PDF