98%
921
2 minutes
20
Developing cost-effective and efficient adsorbents for heavy metals in multicomponent systems is a challenge that needs to be resolved to meet the challenges of wastewater treatment technology. Two adsorbents were synthesized, characterized, and investigated for the removal of Cd and Cr as model heavy metals in their single and binary solutions. The first adsorbent (ACZ) was a nanocomposite formed of O-Carboxymethyl chitosan, sodium alginate, and zeolite. While, the other (ACL) contained ZnFe layered double hydroxides instead of the zeolite phase. Adsorbents were characterized using XRD, FTIR, SEM, and swelling degree analysis. For single heavy metal adsorption isotherms, data for both adsorbents was best fitted and indicated a multilayer adsorption nature. For binary adsorption, Langmuir model with interacting parameters showed the best results compared to other models for both pollutants. For single system, Avrami model was found to be the best model representing the adsorption kinetics data, which indicates that the mechanism of adsorption follows multiple kinetic orders that may change during duration of adsorption process. Numerous interaction mechanisms can occur between the heavy metals and functional groups in the synthesized hydrogels such as NH, COOH, and OH groups leading to efficient adsorption of metal ions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.132809 | DOI Listing |
Environ Monit Assess
September 2025
College of Ecological and Environmental Engineering, Guizhou Minzu University, Guiyang, 550025, China.
The rapid development of industry and agriculture has led to a significant increase in the toxicity and pollution of cadmium (Cd) and lead (Pb) in soil. Consequently, soil remediation employing biochar or modified biochar has emerged as a cost-effective and environmentally sustainable approach to address the issue of heavy metal (HM) ion pollution. PEI-functionalization biochar (PBC) derived from corn straw (PBCC), wood straw (PBCW), and rice straw (PBCR) was synthesized to immobilize Cd and Pb in contaminated acidic yellow soil.
View Article and Find Full Text PDFPhysiol Plant
September 2025
Department of Microbiology, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, India.
Environmental sustainability is seriously threatened by the discharge of wastewater containing hazardous heavy metals (such as Cr, Cd, As, Hg, etc.). The utilization of microalgae has recently come to light as a viable, environmentally acceptable method for removing heavy metals from contaminated sites.
View Article and Find Full Text PDFComp Biochem Physiol C Toxicol Pharmacol
September 2025
Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui province, Hefei, 230601, PR China; College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, 230601, PR China.
Heavy metal (HM) co-contamination is prevalent in the aquatic ecosystems and often induces complex combined effects such as synergism or antagonism, bioconcentration and biomagnification on the food-chain organisms, which is threatening the survival of living creatures and even to human health. However, the combined effects of HMs under combined exposure on the aquatic food chains still remain poorly understood. Therefore, toxic responses, bioconcentration and biomagnification of four typical HMs, lead (Pb), cadmium (Cd), nickel (Ni) and zinc (Zn), were systematically investigated under different combined exposure conditions.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Key Laboratory of Oil & Gas Fine Chemicals, School of Chemical Engineering, Xinjiang University, Urumqi, 830046, China.
With the acceleration of global industrialization, a large amount of polluted wastewater is discharged indiscriminately, which both pollutes the environment and threatens human health. In this study, by constructing a binary system of unsaturated polyester resin/carboxychitosan, and improving the inherent defects of carboxychitosan aerogel, we successfully prepared aerogels with high porosity, low density, and laminar porous structure for water remediation by using a combination of the sol-gel method and directional freezing technology. Thanks to the synergistic effect of surface wettability and special pore structure, the aerogel not only adsorbs and separates MB and Pb(II) efficiently with a separation efficiency of more than 99 %, but also has a separation efficiency of 99.
View Article and Find Full Text PDFBioresour Technol
September 2025
School of Environment, Northeast Normal University, Changchun 130117, PR China.
Heavy metals such as Cu are widely prevalent in wastewater (typically 0.04-157.4 mM in typical treatment systems), threatening microbial communities critical for pollutant removal.
View Article and Find Full Text PDF