Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Microbiota may be associated with esophageal squamous cell carcinoma (ESCC) development. However, it is not known the predictive value of microbial biomarkers combining epidemiological factors for the early detection of ESCC and precancerous lesions.

Methods: A total of 449 specimens (esophageal swabs and saliva) were collected from 349 participants with different esophageal statuses in China to explore and validate ESCC-associated microbial biomarkers from genes level to species level by 16S rRNA sequencing, metagenomic sequencing and real-time quantitative polymerase chain reaction.

Results: A bacterial biomarker panel including Actinomyces graevenitzii (A.g_1, A.g_2, A.g_3, A.g_4), Fusobacteria nucleatum (F.n_1, F.n_2, F.n_3), Haemophilus haemolyticus (H.h_1), Porphyromonas gingivalis (P.g_1, P.g_2, P.g_3) and Streptococcus australis (S.a_1) was explored by metagenomic sequencing to early detect the participants in Need group (low-grade intraepithelial neoplasia, high-grade intraepithelial neoplasia and ESCC) vs participants without these lesions as the Noneed group. Significant quantitative differences existed for each microbial target in which the detection efficiency rate was higher in saliva than esophageal swab. In saliva, the area under the curve (AUC) based on the microbial biomarkers (A.g_4 ∩ P.g_3 ∩ H.h_1 ∩ S.a_1 ∩ F.n_2) was 0.722 (95% CI 0.621-0.823) in the exploration cohort. Combining epidemiological factors (age, smoking, drinking, intake of high-temperature food and toothache), the AUC improved to 0.869 (95% CI 0.802-0.937) in the exploration cohort, which was validated with AUC of 0.757 (95% CI 0.663-0.852) in the validation cohort.

Conclusions: It is feasible to combine microbial biomarkers in saliva and epidemiological factors to early detect ESCC and precancerous lesions in China.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00535-024-02117-8DOI Listing

Publication Analysis

Top Keywords

microbial biomarkers
20
epidemiological factors
16
combining epidemiological
12
early detection
8
esophageal squamous
8
squamous cell
8
cell carcinoma
8
precancerous lesions
8
biomarkers combining
8
factors early
8

Similar Publications

Follicular unit extraction (FUE) has become a leading technique in hair transplantation, yet optimal management of the donor area remains a clinical challenge. This systematic review analyzes intraoperative and postoperative interventions applied to the donor area in FUE hair transplantation, with a focus on both clinical outcomes and the cellular and molecular mechanisms involved in tissue repair, inflammatory response, and regenerative processes. A comprehensive literature search was conducted in PubMed and EMBASE (January 2000-June 2025), identifying clinical studies that evaluated donor area treatments and reported outcomes related to healing, inflammation, infection, and patient satisfaction.

View Article and Find Full Text PDF

Introduction: Acute stroke (AS) is a major public health issue globally, exhibiting high morbidity, disability rate, and mortality. Emerging research has demonstrated the critical roles of gut microbiota and its metabolites in pathogenesis, recovery, and prognosis of AS.

Methods: In this study, we investigated alterations in gut microbiota composition and metabolomic profiles in AS patients using 16S rRNA sequencing and untargeted liquid chromatography-mass spectrometry (LC-MS) metabolomics technology.

View Article and Find Full Text PDF

Introduction: Feline herpesvirus type 1 (FHV-1) is a primary pathogen causing feline upper respiratory tract diseases (FURTD), but its impact on the upper respiratory tract microbiota remains unclear. This study aimed to evaluate the impact of FHV-1 infection on the upper respiratory tract microbiota by comparing the microbial composition between FHV-1-positive group with FHV-1-negative group.

Methods: The microbial diversity in the upper respiratory tract of FHV-1-positive cats ( = 8) were analyzed using 16S rRNA high-throughput sequencing, and then this diversity was compared with that in healthy FHV-1-negative controls ( = 4).

View Article and Find Full Text PDF

Background: Critically ill patients, including those with systemic inflammatory response syndrome (SIRS) and sepsis, frequently exhibit gut microbiota disruption due to physiological stress and broad-spectrum antimicrobial therapy (AT). Although antibiotics are essential for controlling infection, they can destabilize the gut microbiota and may contribute to poorer clinical outcomes. The characterization of the gut microbiota of these patients may inform microbiota-based interventions to mitigate antibiotic-induced dysbiosis.

View Article and Find Full Text PDF

The human microbiota is composed of a complex community of microorganisms essential for maintaining host homeostasis, especially in the gastrointestinal tract. Emerging evidence suggests that dysbiosis is linked to various cancers, including colorectal cancer (CRC). The microbiota contributes to CRC development and progression by influencing inflammation, genotoxic stress, and key cell growth, proliferation, and differentiation pathways.

View Article and Find Full Text PDF