Transforming growth factor-beta 1 enhances discharge activity of cortical neurons.

Neural Regen Res

Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong Province, China.

Published: February 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

JOURNAL/nrgr/04.03/01300535-202502000-00031/figure1/v/2024-05-28T214302Z/r/image-tiff Transforming growth factor-beta 1 (TGF-β1) has been extensively studied for its pleiotropic effects on central nervous system diseases. The neuroprotective or neurotoxic effects of TGF-β1 in specific brain areas may depend on the pathological process and cell types involved. Voltage-gated sodium channels (VGSCs) are essential ion channels for the generation of action potentials in neurons, and are involved in various neuroexcitation-related diseases. However, the effects of TGF-β1 on the functional properties of VGSCs and firing properties in cortical neurons remain unclear. In this study, we investigated the effects of TGF-β1 on VGSC function and firing properties in primary cortical neurons from mice. We found that TGF-β1 increased VGSC current density in a dose- and time-dependent manner, which was attributable to the upregulation of Nav1.3 expression. Increased VGSC current density and Nav1.3 expression were significantly abolished by preincubation with inhibitors of mitogen-activated protein kinase kinase (PD98059), p38 mitogen-activated protein kinase (SB203580), and Jun NH2-terminal kinase 1/2 inhibitor (SP600125). Interestingly, TGF-β1 significantly increased the firing threshold of action potentials but did not change their firing rate in cortical neurons. These findings suggest that TGF-β1 can increase Nav1.3 expression through activation of the ERK1/2-JNK-MAPK pathway, which leads to a decrease in the firing threshold of action potentials in cortical neurons under pathological conditions. Thus, this contributes to the occurrence and progression of neuroexcitatory-related diseases of the central nervous system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11317929PMC
http://dx.doi.org/10.4103/NRR.NRR-D-23-00756DOI Listing

Publication Analysis

Top Keywords

cortical neurons
20
effects tgf-β1
12
action potentials
12
nav13 expression
12
transforming growth
8
growth factor-beta
8
central nervous
8
nervous system
8
firing properties
8
tgf-β1 increased
8

Similar Publications

Distinct prelimbic cortex ensembles encode response execution and inhibition.

Proc Natl Acad Sci U S A

September 2025

Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224.

Learning when to initiate or withhold actions is essential for survival, requiring the integration of past experiences with new information to adapt to changing environments. The prelimbic cortex (PL) plays a central role in this process, with a stable PL neuronal population (ensemble) recruited during operant reward learning to encode response execution. However, it is unknown how this established reward-learning ensemble adapts to changing reward contingencies, such as reward omission during extinction.

View Article and Find Full Text PDF

Examining circadian synaptic plasticity requires housing mice under different lighting conditions (light/dark cycle, LD 12:12, and constant darkness, DD), providing access to running wheels, and sacrificing them at four defined time points within 24 h-at the beginning and middle of the day/subjective day and at the beginning and middle of the night/subjective night. Brains are then properly fixed for transmission electron microscopy (TEM). The barrel cortex, with its precise somatotopic organization, provides an ideal model for such analysis.

View Article and Find Full Text PDF

The claustrum (CLA) is a thin and elongated brain structure that is located between the insula and lateral striatum and is implicated in a wide range of behaviors. It is characterized by its extensive synaptic connectivity with multiple cortical regions. While CLA projection neurons are glutamatergic, several studies have shown an inhibitory impact of CLA on its cortical targets, suggesting the involvement of inhibitory cortical interneurons.

View Article and Find Full Text PDF

Objective: Transcranial ultrasound (US) stimulation (TUS) has emerged as a promising technique for minimally invasive, localized, deep brain stimulation. However, indirect auditory effects during neuromodulation require careful consideration, particularly in experiments with rodents. One method to prevent auditory responses involves applying tapered envelopes to US bursts.

View Article and Find Full Text PDF

Primary open-angle glaucoma (POAG) is characterized by chronic progressive damage to the retinal ganglion cell layer (GCL) and their axons, leading to gradual visual function loss. Currently, the gold standards for structural and functional assessment of the retina in glaucoma are static automated perimetry (SAP) and optical coherence tomography (OCT). However, in clinical practice, data from SAP and OCT may be insufficient to reliably determine the stage of glaucomatous optic neuropathy, monitor its progression, or differentiate it from other causes of visual dysfunction.

View Article and Find Full Text PDF