Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Large-scale and precise measurement of mangrove canopy height is crucial for understanding and evaluating wetland ecosystems' condition, health, and productivity. This study generates a global mangrove canopy height map with a 30 m resolution by integrating Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) photon-counting light detection and ranging (LiDAR) data with multi-source imagery. Initially, high-quality mangrove canopy height samples were extracted using meticulous processing and filtering of ICESat-2 data. Subsequently, mangrove canopy height models were established using the random forest (RF) algorithm, incorporating ICESat-2 canopy height samples, Sentinel-2 data, TanDEM-X DEM data and WorldClim data. Furthermore, a global 30 m mangrove canopy height map was generated utilizing the Google Earth Engine platform. Finally, the global map's accuracy was evaluated by comparing it with reference canopy heights derived from both space-borne and airborne LiDAR data. Results indicate that the global 30 m resolution mangrove height map was found to be consistent with canopy heights obtained from space-borne (r = 0.88, Bisa = -0.07 m, RMSE = 3.66 m, RMSE% = 29.86 %) and airborne LiDAR (r = 0.52, Bisa = -1.08 m, RMSE = 3.39 m, RMSE% = 39.05 %). Additionally, our findings reveal that mangroves worldwide exhibit an average height of 12.65 m, with the tallest mangrove reaching a height of 44.94 m. These results demonstrate the feasibility and effectiveness of using ICESat-2 data integrated with multi-source imagery to generate a global mangrove canopy height map. This dataset offers reliable information that can significantly support government and organizational efforts to protect and conserve mangrove ecosystems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.173487DOI Listing

Publication Analysis

Top Keywords

canopy height
32
mangrove canopy
28
height map
16
global mangrove
12
lidar data
12
height
11
mangrove
10
canopy
10
integrating ice
8
ice cloud
8

Similar Publications

Light adaptive image enhancement for improving visual analysis in intercropping cultivation.

Front Plant Sci

August 2025

Chinese Academy of Agriculture Mechanization Sciences Group Co., Ltd., Beijing, China.

Intercropping maize and soybean with distinct plant heights is a typical practice in diversified cropping systems, where shadows cast by taller maize plants onto soybean rows pose significant challenges for image based recognition. This study conducted experiments throughout the entire soybean-maize intercropping period to address illumination variation. Based on the height difference between crops, solar elevation angle, and light intensity at the top of the soybean canopy, an illumination compensation regression model was developed.

View Article and Find Full Text PDF

Above-ground biomass contributes a large proportion of mangrove carbon stock; however, spatio-temporal dynamics of biomass are poorly understood in carbonate settings of the Southern Hemisphere. This influences the capacity to accurately project the effects of accelerating sea-level rise on this important carbon store. Here, above-ground biomass and productivity dynamics were quantified across mangrove age zones dominated by , spanning a tidal gradient atop a reef platform at Low Isles, Great Barrier Reef, Australia.

View Article and Find Full Text PDF

Forest landscapes play a significant role in both global and local carbon cycles, mitigating climate change by sequestering atmospheric carbon. To maintain carbon stock and enhance sequestration from the atmosphere, it is important to quantify the effects of driving factors on carbon stock. Therefore, this study was designed to evaluate the effects of storing factors, maintaining factors, and disturbing factors on carbon stock, and to analyze the individual and combined effects of multiple factors.

View Article and Find Full Text PDF

Spatial Distribution of Straw-Colored Fruit Bats () Roosts in Obafemi Awolowo University.

Ecol Evol

September 2025

Scientific Services Zimbabwe Parks and Wildlife Management Authority Harare Zimbabwe.

Bats are essential to ecosystem functioning, providing vital services such as pollination, seed dispersal, and insect control. With over 1400 species worldwide, they exhibit diverse roosting behaviors that are influenced by both natural and anthropogenic factors. However, research on bat populations, particularly in urban environments, remains limited in Nigeria.

View Article and Find Full Text PDF

Multi-method estimation of evapotranspiration and influencing factors of desert steppe in the shallow mountainous area of Qilian Mountains, China.

Ying Yong Sheng Tai Xue Bao

July 2025

State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.

To clarify the mechanism of evapotranspiration in desert steppe, we investigated the evapotranspiration and its components in the shallow mountainous area of the Qilian Mountains with five methods, including eddy covariance, lysimeter, and Priestley-Taylor (P-T), Penman-Monteith (P-M), and Shuttleworth-Wallace (S-W) models. We further analyzed the multi-timescale characteristics of evapotranspiration and its components in the Qilian Mountains, and the influencing factors. The results showed that the eddy covariance method was more accurate than the lysimeter.

View Article and Find Full Text PDF