Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Human crowds display various self-organized collective behaviours, such as the spontaneous formation of unidirectional lanes in bidirectional pedestrian flows. In addition, parts of pedestrians' footsteps are known to be spontaneously synchronized in one-dimensional, single-file crowds. However, footstep synchronization in crowds with more freedom of movement remains unclear. We conducted experiments on bidirectional pedestrian flows (24 pedestrians in each group) and examined the relationship between collective footsteps and self-organized lane formation. Unlike in previous studies, pedestrians did not spontaneously synchronize their footsteps unless following external auditory cues. Moreover, footstep synchronization generated by external cues disturbed the flexibility of pedestrians' lateral movements and increased the structural instability of spatial organization. These results imply that, without external cues, pedestrians marching out of step with each other can efficiently self-organize into robust structures. Understanding how asynchronous individuals contribute to ordered collective behaviour might bring innovative perspectives to research fields concerned with self-organizing systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11338568PMC
http://dx.doi.org/10.1098/rsif.2024.0112DOI Listing

Publication Analysis

Top Keywords

bidirectional pedestrian
8
pedestrian flows
8
footstep synchronization
8
external cues
8
robust spatial
4
spatial self-organization
4
crowds
4
self-organization crowds
4
crowds asynchronous
4
pedestrians
4

Similar Publications

To address the growing need for field calibration of the optical properties of pedestrian targets used in autonomous emergency braking (AEB) tests, a novel three-dimensional multi-faceted standard body (TDMFSB) was developed. A camera-based analytical algorithm was proposed to evaluate the bidirectional reflectance distribution function (BRDF) characteristics of pedestrian targets. Additionally, a field calibration method applied in AEB testing scenarios (CPFAO and CPLA protocols) on one new and one aged typical pedestrian target of the same type revealed a 21% decrease in the BRDF uniformity of the aged target compared to the new one, confirming optical degradation due to repeated "crash-scatter-reassembly" cycles.

View Article and Find Full Text PDF

Addressing the traffic safety issues caused by pedestrian-vehicle conflicts during street crossing, this study proposes optimization strategies from both theoretical and technical perspectives. A safety braking distance model is introduced, taking into account pedestrians' psychological safety and vehicle braking processes. Additionally, an active safety warning system for crosswalks has been designed.

View Article and Find Full Text PDF

Pedestrian detection in coal mines is crucial for video surveillance systems. Limited computational resources pose challenges to deploying large models, affecting detection efficiency. To address this, we propose a lightweight pedestrian in coal mine detector with multi-level feature fusion.

View Article and Find Full Text PDF

Accurate localization is crucial for numerous applications. While several methods exist for outdoor localization, typically relying on GPS signals, these approaches become unreliable in environments subject to a weak GPS signal or GPS outage. Many researchers have attempted to address this limitation, primarily focusing on real-time solutions.

View Article and Find Full Text PDF

To address the challenges of low accuracy in indoor positioning caused by factors such as signal interference and visual distortions, this paper proposes a novel method that integrates ultra-wideband (UWB) technology with visual positioning. In the UWB positioning module, the powerful feature-extraction ability of the graph convolutional network (GCN) is used to integrate the features of adjacent positioning points and improve positioning accuracy. In the visual positioning module, the residual results learned from the bidirectional gate recurrent unit (Bi-GRU) network are compensated into the mathematical visual positioning model's solution results to improve the positioning results' continuity.

View Article and Find Full Text PDF