Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
A series of triphenylamine-derived fluorescent dyes were attached to a Cu-containing MOF (metal-organic framework), denoted as Pm@CuMOF. The molecular structures of these dyes were discussed by the single crystal structures. Their major absorption bands peaked at 410-450 nm, showing emission bands ranging from 556 to 586 nm with emission quantum yields ranging from 8.0 to 15.1%. It was found that the [-N(CH)] group generally improved sensing performance, and the -OH group in the dyes helped the Cu quenching effect. Pm@CuMOF was observed by SEM as nanorods with a width of ~100 nm and a length of 300 nm. Their XRD patterns and N adsorption/desorption isotherms were recorded to confirm their porous structure. A low probe loading level of ~4% was determined by TGA result. The CO sensing mechanism was revealed as a Cu/Cu-involved sensing mechanism based on the result of NMR titration, IR, XPS, and EPR. The fluorescence of these triphenylamine-derived dyes was firstly quenched by CuMOF. In contact with CO, Cu was reduced to Cu, accompanied by the release and fluorescence recovery of the fluorescent dyes, showing emission turn-on effect towards CO gas. Pm@CuMOF showed increased emission intensity at CO level of 0.005% (versus N), with response times ranging from 123 s to 280 s (depending on various temperatures). Good selectivity was observed over competing alkane gases, with stable emission for at least 5 days, but no linear calibration plots were observed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00604-024-06434-w | DOI Listing |