98%
921
2 minutes
20
Cancer is among the leading causes of mortality and morbidity in the world. Metallic nanoparticles, especially gold nanoparticles (AuNPs) have emerged to be attractive systems to circumvent the associated adverse effects. By the virtue of their unique properties of tunable size, shape, composition, optical properties, biocompatibility, minimal toxicity, multivalency, fluorescence-luminescence property and surface plasmon resonance; AuNPs have the potential to be used as drug delivery systems. It is vital to ensure that the drug reaches the target site of action for selective kill of cancer cells without harm to healthy cells. These AuNPs can be easily functionalized with a wide array of ligands like peptides, oligonucleotides, polymers, carbohydrates for active targeting to ensure site specific delivery and reduced systemic effects. AuNPs have been in-vestigated as carriers for gene delivery, drug delivery with or without photothermal therapy, in diagnosis based on radiation or spectroscopy. They have emerged as attractive theranostic approach in the overall management of cancer with superior benefit to risk features. In this review, we have discussed synthesis of different AuNPs (nanorods, spherical nanoparticles, and hollow AuNPs), their functionalization strategies and their applications in biomedical domain. Various research studies and clinical trials on application of AuNPs in diagnosis and therapeutics are highlighted.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2024046712 | DOI Listing |
Anal Bioanal Chem
September 2025
GuangDong Engineering Technology Research Center of Antibody Drug and Immunoassay, Department of Biological Sciences and Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
Illicit drug abuse poses a significant global threat to public health and social security, highlighting the urgent need for rapid, sensitive, and versatile detection technologies. To address the limitations of traditional chromatographic techniques-such as high costs and slow response times-and the drawbacks of conventional immunochromatographic sensors (ICS), including low sensitivity and non-intuitive signal outputs, a fluorescence-quenching ICS (FQICS) was developed. This sensor leverages fluorescence resonance energy transfer (FRET) between aggregation-induced emission fluorescent microspheres (AIEFMs) and gold nanoparticles (AuNPs).
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
School of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan. Electronic address:
The development of antiviral nanotherapeutics remains a formidable challenge due to the structural diversity and rapid evolution of viral surface glycoconjugates. Here, we report a rationally engineered multivalent Galectin-1 (Gal-1) nanoplatform based on 13-nm gold nanoparticles (AuNPs) for high-affinity glycan targeting and therapeutic inhibition of influenza virus. By leveraging site-specific conjugation and molecular orientation control, the AuNP/Gal-1 nanocomplex maximizes the exposure of carbohydrate recognition domains (CRDs) while preserving Gal-1's tertiary structure, as confirmed by molecular dynamics simulations and spectroscopic analyses.
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China.
Adulterated yohimbine (YHB) in food poses a risk to public health, making it imperative to develop fast and sensitive detection methods. In this study, computational-chemistry-based prediction was employed to design YHB haptens for generating the high-affinity monoclonal antibody Yohi-4A7, which exhibited an optimal half-inhibitory concentration (IC) of 1.69 ng/mL against YHB.
View Article and Find Full Text PDFAnal Chem
September 2025
Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, P. R. China.
Electroactive bacteria (EAB) hold great promise for the development of electrochemical biosensors given their unique ability to transfer electrons extracellularly via specialized pathways, a process termed extracellular electron transfer (EET). Ongoing research aims to overcome current limitations and fully harness the potential of EABs for high-performance biosensing applications. Herein, we report the fabrication of an electrochemical microsensor based on biomineralized electroactive bacteria, specifically MR-1.
View Article and Find Full Text PDFIndian J Nucl Med
August 2025
Department of Physics, Shi.C., Islamic Azad University, Shiraz, Iran.
Background: Another approach to improve the dose conformity is to use charged particles like protons instead of the conventional X- and γ-rays. Protons exhibit a specific depth-dose distribution which allows to achieve a more targeted dose deposition and a significant sparing of healthy tissue behind the tumor. In particular, proton therapy has, therefore, become a routinely prescribed treatment for tumors located close to sensitive structures.
View Article and Find Full Text PDF