Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

To inhibit the deep conversion of partial oxidation products (POX-products) in C-H bonds' functionalization utilizing O, 5-(4-(chloromethyl)phenyl)-10,15,20-tris(perfluorophenyl)porphyrin cobalt(II) and 5-(4-(chloromethyl)phenyl)-10,15,20-tris(perfluorophenyl)porphyrin copper(II) were immobilized on the surface of hybrid silica to conduct relay catalysis on the surface. Fluorocarbons with low polarity and heterogeneous catalysis were devised to decrease the convenient accessibility of polar POX-products to catalytic centers on the lower polar surface. Relay catalysis between Co and Cu was designed to utilize the oxidation intermediates alkyl hydroperoxides to transform more C-H bonds. Systematic characterizations were conducted to investigate the structure of catalytic materials and confirm their successful syntheses. Applied to C-H bond oxidation, not only deep conversion of POX-products was inhibited but also substrate conversion and POX-product selectivity were improved simultaneously. For cyclohexane oxidation, conversion was improved from 3.87% to 5.27% with selectivity from 84.8% to 92.3%, which was mainly attributed to the relay catalysis on the surface excluding products. The effects of the catalytic materials, product exclusion, relay catalysis, kinetic study, substrate scope, and reaction mechanism were also investigated. To our knowledge, a practical and novel strategy was presented to inhibit the deep conversion of POX-products and to achieve efficient and accurate oxidative functionalization of hydrocarbons. Also, a valuable protocol was provided to avoid over-reaction in other chemical transformations requiring high selectivity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11117990PMC
http://dx.doi.org/10.3390/biomimetics9050272DOI Listing

Publication Analysis

Top Keywords

relay catalysis
20
deep conversion
16
conversion partial
8
partial oxidation
8
oxidation products
8
c-h bonds'
8
bonds' functionalization
8
functionalization utilizing
8
surface hybrid
8
hybrid silica
8

Similar Publications

Achieving precise regioselectivity in the hydroamination of alkenes is in high demand yet remains a longstanding challenge, particularly when electronically competing β-substituents are present. Here, we report a dual boron/iron catalytic system that enables the unprecedented hydroamidation of α,β-unsaturated esters to exclusively access α-amidated esters under mild conditions. The strategy harnesses the Lewis acidity of B(CF) to rapidly generate reactive silyl ketene acetal intermediates, which are subsequently intercepted by in situ generated iron nitrenoids.

View Article and Find Full Text PDF

Regulation of Relay Catalytic Mechanism for Efficient Methanol Oxidation Reaction.

Angew Chem Int Ed Engl

September 2025

Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai Univers

The methanol oxidation reaction serves as a representative model for multistep catalytic processes involving diverse intermediates. Catalyst design strategies that spatially arrange discrete active sites, analogous to relay runners, facilitate the sequential activation of reaction steps, thereby enhancing overall catalytic efficiency compared to single-site catalysts. This approach effectively decouples complex reaction networks into a sequence of coordinated elementary steps, thereby enhancing the production efficiency of the target products.

View Article and Find Full Text PDF

Cu/Ru Relay Catalysis Enables Functionalization of Allenic Alcohols with Stereodivergence and Skeleton Diversity.

J Am Chem Soc

August 2025

Hubei Research Center of Fundamental Science-Chemistry, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.

The stereodivergent synthesis of structurally complex molecules bearing multiple stereochemical elements represents a pivotal challenge in modern synthetic chemistry, particularly for bioactive compounds, where stereochemical nuances dictate pharmacological profiles. While stereodivergent dual catalysis has advanced full access to stereoisomers with stereogenic centers, the integration of stereodefined alkenes into chiral molecules with both stereochemical and skeletal diversification remains elusive. In this study, we report stereo- and skeleton-divergent access to chiral fluorinated -heterocycles with comprehensive stereocontrol of [(,), (,), (,), (,)] and [(,), (,), (,), (,)] enabled by a bimetallic Cu/Ru relay catalytic system, featuring redox-neutral efficiency and atom/step economy.

View Article and Find Full Text PDF

Filamentous cable bacteria are capable of centimeter-scale long-distance electron transport and play crucial roles in the biogeochemistry of aquatic sediments. However, the mechanisms underlying long-distance electron transport remain incompletely understood. This study reports dynamic contacts between separate filaments of cable bacteria, enabling them to relay electrons between sulfidic and oxic zones.

View Article and Find Full Text PDF

Immobilized Azole Layer Tunes Interfacial Hydrogen Source for CO Electroreduction in Strong Acid.

J Am Chem Soc

August 2025

Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science an

Achieving selective electrochemical CO reduction reaction (CORR) in strong acid holds potential to resolve the "carbonate formation" problem yet is hindered by the competing hydrogen evolution reaction (HER). The interplay between different hydrogen sources (i.e.

View Article and Find Full Text PDF