98%
921
2 minutes
20
Microbial metabolism is closely related to soil carbon dioxide emissions, which in turn is related to environmental issues such as global warming. Dissolved organic matter (DOM) affects many fundamental biogeochemical processes such as microbial metabolism involved in soil carbon cycle, not only directly by its availability, but also indirectly by its chemodiversity. However, the association between the DOM chemodiversity and bioavailability remains unclear. To address this knowledge gap, soils from two agro-ecological experimental sites subjected to various long-term fertilizations in subtropical area was collected. The chemodiversity of DOM was detected by multi-spectroscopic techniques including ultraviolet-visible spectrophotometry, Fourier transform infrared spectroscopy and excitation emission matrices fluorescence spectroscopy. Results showed that long-term manure amendments significantly decreased microbial metabolic quotient (qCO) by up to 57%. We also observed that long-term manure amendments significantly increased recalcitrant components of DOM (indicated by the aromaticity, humification index, the ratio of aromatic carbon to aliphatic carbon, and the relative abundances of humic-like components) and decreased labile components of DOM. Negatively correlation between the qCO and the proportion of recalcitrant components of DOM supported that accumulation in recalcitrant components of DOM increased microbial carbon utilization efficiency. Random forest models also showed the highest contribution of the relative abundances of humic-like components and the aromaticity of DOM in affecting qCO. Both of the redundancy analysis and structural equation modeling further indicated the decisive role of soil pH in influencing the DOM chemodiversity. Soil pH explained 56.7% of the variation in the chemodiversity of DOM. The accumulation of recalcitrant components in DOM with increasing soil pH might be attributed to the accelerated microbial consumption of bioavailability components and/or to the negative impact on the solubility of bioavailability components. Overall, this research highlights the significance of long-term manure amendments in regulating qCO by altering the chemodiversity of soil DOM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.173287 | DOI Listing |
Int J Biol Macromol
September 2025
Faculty of Agronomy and Agricultural Sciences, University of Dschang, PO. Box 222, Dschang, Cameroon.
Dissolved organic matter (DOM) plays a key role in grassland carbon biogeochemistry and shows sensitivity to global climate change, particularly nitrogen (N) deposition. We investigated the soil DOM molecular composition by UV-Vis and fluorescence spectroscopy, and FT-ICR MS through a N addition experiment (CK, N5, N10, N20, and N40 [0, 5, 10, 20, and 40 g N m-2 year-1, respectively]) in a desert steppe of northwest China. Moderate N inputs (N5-N20) caused a dose-dependent increase in DOM content (9.
View Article and Find Full Text PDFWater Res
September 2025
Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China. Electronic address:
Plantation forest areas are rapidly expanding worldwide. Forests at different stand ages exhibit distinct patterns in litterfall input, soil microbial diversity, and enzyme activity, all of which potentially affect the properties of dissolved organic matter (DOM). DOM is an important precursor of disinfection byproducts (DBPs).
View Article and Find Full Text PDFBiophys J
September 2025
Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
The concept of the circular bioeconomy is a carbon neutral, sustainable system with zero waste. One vision for such an economy is based upon lignocellulosic biomass. This lignocellulosic circular bioeconomy requires CO absorption from biomass growth and the efficient deconstruction of recalcitrant biomass into solubilized and fractionated biopolymers which are then used as precursors for the sustainable production of high-quality liquid fuels, chemical bioproducts and bio-based materials.
View Article and Find Full Text PDFAutophagy Rep
August 2025
Molecular, Cellular, and Developmental Biology Program, Ohio State University, Columbus, USA, OH.
During chronic infections, biofilms are resistant to both antimicrobial agents as well as the host immune system, often giving rise to recalcitrant persister cells with reduced mitochondrial function rendering biofilm infections difficult to cure. How mitochondrial dynamics and fate are regulated during fungal biofilm formation is poorly understood. In this study, we used live cell microscopy to track mitochondrial morphology during in vitro biofilm formation.
View Article and Find Full Text PDFFront Plant Sci
August 2025
Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.
Introduction: Wood is primarily made up of secondary xylem cell walls, with lignin, cellulose, and hemicellulose as the main chemical components. The presence of lignin represents recalcitrance to wood pulping and biofuel conversion. Consequently, reducing lignin content is a key approach to improving wood properties and optimizing its processing.
View Article and Find Full Text PDF