98%
921
2 minutes
20
Precise imaging-guided therapy of a pulmonary metastasis tumor is of great significance for tumor management and prognosis. Persistent luminescence nanoparticles (PLNPs) are promising probes due to their excitation-free and low-background imaging characteristics. However, most of the PLNP-based probes cannot intelligently distinguish between normal and tumor tissues or balance the needs of targeted accumulation and rapid metabolism, resulting in false positive signals and potential side effects. Besides, the luminescence intensity of single-emissive PLNPs is affected by external factors. Herein, we report a self-evolving double-emissive PLNP-based nanoprobe ZGMC@ZGC-TAT for pulmonary metastatic tumor imaging and therapy. Acid-degradable green-emitting PLNPs (ZGMC) with good afterglow performance and therapeutic potential are synthesized by systematic optimization of dopants. Ultra-small red-emitting PLNPs (ZGC) are then prepared as imaging and reference probes. The two PLNPs are finally covalently coupled and further modified with a cell-penetrating peptide (TAT) to obtain ZGMC@ZGC-TAT. Dual emission ensures a stable luminescence ratio (/) independent of probe concentration, test voltage and time gate. ZGMC degrades and phosphorescence disappears in a tumor microenvironment (TME), resulting in an increase in /, thus enabling tumor-specific ratiometric imaging. Cu and Mn released by ZGMC degradation achieve GSH depletion and enhance CDT, effectively inhibiting tumor cell proliferation. Meanwhile, the size of ZGMC@ZGC-TAT decreases sharply, and the resulting ZGC-TAT further causes nuclear pyknosis and quickly clear metabolism. The developed ZGMC@ZGC-TAT turns non-targeted lung aggregation of nanomaterials into a unique advantage, and integrates TME-triggered phosphorescence and size self-evolution, and on-demand therapeutic functions, showing outstanding prospects in precise imaging and efficient treatment of pulmonary metastatic tumors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4bm00379a | DOI Listing |
BMC Health Serv Res
September 2025
Institute of General Practice, Rostock University Medical Center, Doberaner Str. 142, Rostock, 18057, Germany.
Background: Post-viral syndromes, including long- and post-COVID, often lead to persistent symptoms such as fatigue and dyspnoea, affecting patients' daily lives and ability to work. The COVI-Care M-V trial examines whether interprofessional, patient-centred teleconsultations, initiated by general practitioners in cooperation with specialists, can help reduce symptom burden and improve care for patients.
Methods: To evaluate the effectiveness of the intervention under routine care conditions, a cluster-randomised controlled trial is being conducted.
Genome Biol
September 2025
Center for Genomic Medicine, Cardiovascular Research Center, , Massachusetts General Hospital Simches Research Center, 185 Cambridge Street, CPZN 5.238,, Boston, MA, 02114, USA.
Background: Rare genetic variation provided by whole genome sequence datasets has been relatively less explored for its contributions to human traits. Meta-analysis of sequencing data offers advantages by integrating larger sample sizes from diverse cohorts, thereby increasing the likelihood of discovering novel insights into complex traits. Furthermore, emerging methods in genome-wide rare variant association testing further improve power and interpretability.
View Article and Find Full Text PDFNat Cell Biol
September 2025
Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
Durotaxis, cell migration along stiffness gradients, is linked to embryonic development, tissue repair and disease. Despite solid in vitro evidence, its role in vivo remains largely speculative. Here we demonstrate that durotaxis actively drives disease progression in vivo in mouse models of lung fibrosis and metastatic pancreatic cancer.
View Article and Find Full Text PDFZhonghua Jie He He Hu Xi Za Zhi
September 2025
Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 210032, China.
Antisynthetase syndrome(ASS) is an entity among the immune inflammatory myopathies(IIM), which always affects lungs. Interstitial lung disease(ILD) is common in ASS, while pulmonary hypertention(PH)is rarely observed. In this paper, we reported a case of ASS with ILD and PH.
View Article and Find Full Text PDFZhonghua Jie He He Hu Xi Za Zhi
September 2025
Department of Pulmonary & Critical Care Medicine, West China Hospital, Sichuan University,Chengdu 600041, China.
Severe pneumonia is a common clinical respiratory disease that is frequently managed by physicians in the Department of Pulmonary and Critical Care Medicine (PCCM). The development of acute respiratory distress syndrome (ARDS) and sepsis are critical factors that contribute to the disease progression and a poor prognosis in severe pneumonia patients. As a key focus in the diagnosis and treatment of critical illnesses, the management of severe pneumonia leverages the strengths of the discipline for pulmonary and critical care physicians.
View Article and Find Full Text PDF