Modeling the molecular composition of secondary organic aerosol under highly polluted conditions: A case study in the Yangtze River Delta Region in China.

Sci Total Environ

Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China.

Published: August 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A near-explicit mechanism, the master chemical mechanism (MCMv3.3.1), coupled with the Community Multiscale Air Quality (CMAQ) model (CMAQ-MCM-SOA), was applied to investigate the characteristics of secondary organic aerosol (SOA) during a pollution event in the Yangtze River Delta (YRD) region in summer 2018. Model performances in predicting explicit volatile organic compounds (VOCs), organic aerosol (OA), secondary organic carbon (SOC), and other related pollutants in Taizhou, as well as ozone (O) and fine particulate matter (PM) in multiple cities in this region, were evaluated against observations and model predictions by the CMAQ model coupled with a lumped photochemical mechanism (SAPRC07tic, S07). MCM and S07 exhibited similar performances in predicting gaseous species, while MCM better captured the observed PM and inorganic aerosols. Both models underpredicted OA concentrations. When excluding data during biomass burning events, SOC concentrations were underpredicted by the CMAQ-MCM-SOA model (-28.4 %) and overpredicted by the CMAQ-S07 model (134.4 %), with better agreement with observations in the trend captured by the CMAQ-MCM-SOA model. Dicarbonyl SOA accounted for a significant fraction of total SOA in the YRD, while organic nitrates originating from aromatics were the most abundant species contributing to the SOA formation from gas-particle partitioning. The oxygen-to‑carbon ratio (O/C) for SOA and OA were 0.68-0.75 and 0.20-0.65, respectively, indicating a higher oxidation state in the areas influenced by biogenic emissions. Finally, the phase state of SOA was examined by calculating the glass transition temperature (T) based on its molecular composition. It was found that semi-solid state characterized SOA in the YRD, which could potentially impact their chemical transformation and lifetimes along with those of their precursors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.173327DOI Listing

Publication Analysis

Top Keywords

secondary organic
12
organic aerosol
12
molecular composition
8
yangtze river
8
river delta
8
cmaq model
8
performances predicting
8
cmaq-mcm-soa model
8
soa yrd
8
model
7

Similar Publications

Drought stress affects plant growth and production. To cope with drought stress, plants induced physiological and metabolic changes, serving as a protective approach under drought-stress conditions. The response to drought can vary based on plant type (C3 vs.

View Article and Find Full Text PDF

Soda biscuit-like Ag-ZnO@ZIF-8 heterostructures were successfully synthesized using a secondary hydrothermal method for the first time, demonstrating exceptional ethylene glycol sensing performance. The sample (2-Methylimidazol (MeIm) concentration of 0.04 g) exhibits a remarkable response value of 1325.

View Article and Find Full Text PDF

China's aluminum-products industry, a large-scale consumer of industrial paints, is a potentially significant source of full-volatility organic compounds (F-VOCs). However, the emission characteristics of F-VOCs, including VOCs, intermediate-, semi-, and low-volatility organic compounds (I/S/LVOCs), and their role in ozone formation potentials (OFP), and secondary organic aerosol formation potentials (SOAP) remain unclear. In this study, we collected in-field samples from three industrial paints (solvent-based, water-based and powder paints) at spraying and drying processes, and treatment devices to analyze the emission characteristics of F-VOCs, OFP, SOAP.

View Article and Find Full Text PDF

This review examines the chemical and ecological interactions between filter-feeding mussels and the green macroalga Ulva prolifera in integrated multi-trophic aquaculture (IMTA) systems. Mussels are crucial for nutrient recycling, as they filter water and release bioavailable compounds such as ammonium (NH), urea (CO(NH)), and dissolved organic matter (DOM). These compounds promote Ulva growth and enhance microbial activity.

View Article and Find Full Text PDF

Removal of antibiotics from anaerobically digested biosolids via synergistic release using ethylenediaminetetraacetic acid disodium salt dihydrate and sodium persulfate oxidation.

J Environ Manage

September 2025

Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China. Electronic address:

Large-scale anaerobic treatment involves a high risk of antibiotic pollution in anaerobically digested (AD) biosolids, which hinders the efficient utilization of farmland AD biosolids. Herein, a process for the in situ removal of antibiotics from AD biosolids using ethylenediaminetetraacetic acid disodium salt dihydrate as the release agent synergized with sodium persulfate oxidation is reported. The developed process was used to remove antibiotics from actual AD biosolids.

View Article and Find Full Text PDF