Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

(Bagnall), the main pest on legume vegetables, is controlled by pyrethroids in the field. Field strains of resistant to pyrethroids were collected from three areas in Hainan Province (Haikou, Ledong, and Sanya City), and two mutations, T929I and K1774N, were detected in the voltage-gated sodium channel. In this study, the sodium channel in was first subcloned and successfully expressed in oocytes. The single mutation (T929I or K1774N) and double mutation (T929I/K1774N) shifted the voltage dependence of activation in the hyperpolarization direction. The three mutants all reduced the amplitude of tail currents induced by type I (permethrin and bifenthrin) and type II (deltamethrin and λ-cyhalothrin) pyrethroids. Homology modeling analysis of these two mutations shows that they may change the local hydrophobicity and positive charge of the sodium channel. Our data can be used to reveal the causes of the resistance of to pyrethroids and provide guidance for the comprehensive control of in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.4c00355DOI Listing

Publication Analysis

Top Keywords

sodium channel
16
voltage-gated sodium
8
t929i k1774n
8
functional characterization
4
characterization double
4
double mutations
4
mutations t929i/k1774n
4
t929i/k1774n voltage-gated
4
sodium
4
channel
4

Similar Publications

Energy deficiency selects crowded live epithelial cells for extrusion.

Nature

September 2025

The Randall Centre for Cell & Molecular Biophysics, School of Basic & Medical Biosciences, King's College London, London, UK.

Epithelial cells work collectively to provide a protective barrier, yet they turn over rapidly through cell division and death. If the numbers of dividing and dying cells do not match, the barrier can vanish, or tumours can form. Mechanical forces through the stretch-activated ion channel Piezo1 link both of the processes; stretch promotes cell division, whereas crowding triggers live cells to extrude and then die.

View Article and Find Full Text PDF

Migraine is a complex neurological disorder influenced by multiple genetic susceptibility factors, yet current animal models fail to fully recapitulate its human-specific pathophysiology. In this study, we explored the potential mechanisms underlying migraine by examining functional abnormalities and molecular dysregulation in glutamatergic neurons derived from induced pluripotent stem cells (iPSCs) of migraine patients. As key excitatory cells in the central nervous system, glutamatergic neurons are implicated in migraine through altered excitability, ion channel dysfunction, and dysregulation of nociceptive signaling molecules.

View Article and Find Full Text PDF

FDG PET Findings in Rare Brain Sodium Channelopathy Associated with SCN2A Gene Mutation.

Clin Nucl Med

September 2025

Department of Nuclear Medicine & PET/CT, Mahajan Imaging & Labs.

SCN2A gene mutations, which affect the function of the voltage-gated sodium channel NaV1.2, are associated with a spectrum of neurological disorders, including epileptic encephalopathies and autism spectrum disorders. Advanced imaging modalities such as magnetic resonance imaging (MRI) and positron emission tomography (PET) have been instrumental in elucidating the neuroanatomic and functional alterations associated with these mutations.

View Article and Find Full Text PDF

Proteomic characterization and lethality of the venom of the Black Judean scorpion, Hottentotta judaicus (Buthidae): expanded toxin diversity and revisited toxicological significance.

Arch Toxicol

September 2025

Laboratorio de Proteómica, Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, 11501, Costa Rica.

The scorpion Hottentotta judaicus inhabits the Levant region of the Middle East, including Lebanon, Jordan, Palestine, and Israel. While previous research focused on its insecticidal properties and sodium-channel-targeting toxins, its venom remains largely unexplored using modern proteomic approaches. We analyzed the venom composition of H.

View Article and Find Full Text PDF

Sodium-ion batteries (SIBs) are promising alternatives to lithium-ion batteries (LIBs) owing to abundant resources and cost-effectiveness. However, cathode materials face persistent challenges in structural stability, ion kinetics, and cycle life. This review highlights the transformative potential of high-entropy (HE) strategies that leveraging multi-principal element synergies to address these limitations entropy-driven mechanisms.

View Article and Find Full Text PDF