98%
921
2 minutes
20
Purpose: Quantitative MRI enables direct quantification of contrast agent concentrations in contrast-enhanced scans. However, the lengthy scan times required by conventional methods are inadequate for tracking contrast agent transport dynamically in mouse brain. We developed a 3D MR fingerprinting (MRF) method for simultaneous T and T mapping across the whole mouse brain with 4.3-min temporal resolution.
Method: We designed a 3D MRF sequence with variable acquisition segment lengths and magnetization preparations on a 9.4T preclinical MRI scanner. Model-based reconstruction approaches were employed to improve the accuracy and speed of MRF acquisition. The method's accuracy for T and T measurements was validated in vitro, while its repeatability of T and T measurements was evaluated in vivo (n=3). The utility of the 3D MRF sequence for dynamic tracking of intracisternally infused Gd-DTPA in the whole mouse brain was demonstrated (n=5).
Results: Phantom studies confirmed accurate T and T measurements by 3D MRF with an undersampling factor up to 48. Dynamic contrast-enhanced (DCE) MRF scans achieved a spatial resolution of 192 ✕ 192 ✕ 500 μm and a temporal resolution of 4.3 min, allowing for the analysis and comparison of dynamic changes in concentration and transport kinetics of intracisternally infused Gd-DTPA across brain regions. The sequence also enabled highly repeatable, high-resolution T and T mapping of the whole mouse brain (192 ✕ 192 ✕ 250 μm) in 30 min.
Conclusion: We present the first dynamic and multi-parametric approach for quantitatively tracking contrast agent transport in the mouse brain using 3D MRF.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11092875 | PMC |
Metab Brain Dis
September 2025
Department of Neuroscience, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
Brain ischemia is a major global cause of disability, frequently leading to psychoneurological issues. This study investigates the effects of 4-aminopyridine (4-AP) on anxiety, cognitive impairment, and potential underlying mechanisms in a mouse model of medial prefrontal cortex (mPFC) ischemia. Mice with mPFC ischemia were treated with normal saline (NS) or different doses of 4-AP (250, 500, and 1000 µg/kg) for 14 consecutive days.
View Article and Find Full Text PDFFood Funct
September 2025
College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China.
Blackcurrant is rich in polyphenolic substances with corresponding antioxidant and anti-inflammatory properties. Therefore, based on the identification of typical functional components of blackcurrant polyphenols (BCP), the present study investigated the therapeutic effects of BCP on alcoholic liver disease (ALD) by modulating fibroblast growth factor 21 (FGF21) in both an HepG2 cell model and an C57BL/6J mouse model of acute alcoholism. In total, 892 polyphenols and 45 anthocyanins were identified in blackcurrant.
View Article and Find Full Text PDFMol Omics
September 2025
Division of Animal Sciences, University of Missouri, 920 East Campus Drive, Columbia, Missouri 65211, USA.
Mice lacking caveolin-1 (), a major protein of the lipid raft of plasma membrane, show deregulated cellular proliferation of the mammary gland and an abnormal fetoplacental communication during pregnancy. This study leverages a multi-omics approach to test the hypothesis that the absence of elicits a coordinated crosstalk of genes among the mammary gland, placenta and fetal brain in pregnant mice. Integrative analysis of metabolomics and transcriptomics data of mammary glands showed that the loss of significantly impacted specific metabolites and metabolic pathways in the pregnant mice.
View Article and Find Full Text PDFBrain Commun
August 2025
Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA.
was identified in human and mouse Huntington's disease brain as the pathogenic exon 1 mRNA generated from aberrant splicing between exon 1 and 2 of that contributes to aggregate formation and neuronal dysfunction. Detection of the huntingtin exon 1 protein (HTT1a) has been accomplished with Meso Scale Discovery, Homogeneous Time Resolved Fluorescence and immunoprecipitation assays in Huntington's disease knock-in mice, but direct detection in homogenates by gel electrophoresis and western blot assay has been lacking. Subcellular fractions prepared from mouse and human Huntington's disease brain were separated by gel electrophoresis and probed by western blot with neoepitope monoclonal antibodies 1B12 and 11G2 directed to the C-terminal eight residues of HTT1a.
View Article and Find Full Text PDFNeuropsychiatr Dis Treat
September 2025
Medical College, Tibet University, Lhasa, Tibet, People's Republic of China.
Background: Tripterygium glycoside (TG) has been reported to have the effect of ameliorating Alzheimer's disease (AD)-like symptoms in mice model. However, the underlying mechanism is largely unknown. This study aimed to investigate the potential mechanism of TG against AD by integrating metabolomics, 16s rRNA sequencing, network pharmacology, molecular docking, and molecular dynamics simulation.
View Article and Find Full Text PDF