98%
921
2 minutes
20
As a leading contender to replace lead halide perovskites, tin-based perovskites have demonstrated ever increasing performance in solar cells and light-emitting diodes (LEDs). They tend to be processed with dimethyl sulfoxide (DMSO) solvent, which has been identified as a major contributor to the Sn(II) oxidation during film fabrication, posing a challenge to the further improvement of Sn-based perovskites. Herein, we use NMR spectroscopy to investigate the kinetics of the oxidation of SnI, revealing that autoamplification takes place, accelerating the oxidation as the reaction progresses. We propose a mechanism consistent with these observations involving water participation and HI generation. Building upon these insights, we have developed low-temperature Sn-based perovskite LEDs (PeLEDs) processed at 60 °C, achieving enhanced external quantum efficiencies (EQEs). Our research underscores the substantial potential of low-temperature DMSO solvent processes and DMSO-free solvent systems for fabricating oxidation-free Sn-based perovskites, shaping the future direction in processing Sn-containing perovskite materials and optoelectronic devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202407193 | DOI Listing |
J Am Chem Soc
September 2025
Nanochemistry Department, Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany.
Covalent organic frameworks (COFs) have been emerging as versatile reticular materials due to their tunable structures and functionalities, enabled by precise molecular engineering at the atomic level. While the integration of multiple components into COFs has substantially expanded their structural complexity, the strategic engineering of diverse functionalities within a single framework the random distribution of linkers with varying lengths remains largely unexplored. Here, we report a series of highly crystalline mixed-length multivariate COFs synthesized using azobenzene and bipyridine as linkers, where tuning the ratio of linkers and incorporating palladium effectively modulates the balance between near-infrared (NIR) light absorption and catalytic sites for NIR-generation of hydrogen peroxide (HO).
View Article and Find Full Text PDFNanoscale
September 2025
College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
With the progress of study, MoS has been proven to show excellent properties in electronics and optoelectronics, which promotes the fabrication of future novel integrated circuits and photodetectors. However, highly uniform wafer-scale growth is still in its early stage, especially regarding how to control the precursor and its distribution. Herein, we propose a new method, spraying the Mo precursor, which is proven to fabricate highly uniform 2-inch monolayer MoS wafers.
View Article and Find Full Text PDFAdv Mater
September 2025
Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
Recently, halide perovskite materials have attracted significant research interest in photoelectrochemical cells as promising photoabsorbers due to their superior optoelectronic properties. However, their instability under environmental conditions remains a major obstacle to the development of stable water-splitting devices. This review thoroughly examines the growing array of encapsulation strategies that have accelerated the integration of perovskite materials into water-splitting systems.
View Article and Find Full Text PDFMagn Reson Lett
May 2025
Department of Medical Imaging, Tianjin First Central Hospital, Tianjin, 300192, China.
Hepatic encephalopathy (HE) is a neurological condition that occurs as a complication of liver dysfunction that involves sensorimotor symptoms in addition to cognitive and behavioral changes, particularly in cases of severe liver disease or cirrhosis. Previous studies have reported spatially distributed structural and functional abnormalities related to HE, but the exact relationship between the structural and functional alterations with respect to disease progression remains unclear. In this study, we performed surface-based cortical thickness comparisons and functional connectivity (FC) analyses between three cross-sectional groups: healthy controls (HC, = 51), patients with minimal hepatic encephalopathy (MHE, = 50), patients with overt hepatic encephalopathy (OHE, = 51).
View Article and Find Full Text PDFChem Sci
August 2025
School of Physics, Nanjing University of Science and Technology Nanjing 210094 China
The role of electronic spin in electrocatalysis has led to the emerging field of "spin-dependent electrocatalysis". While spin effects in individual active sites have been well understood, spin coupling among multiple sites remains underexplored in electrocatalysis, which will bring forth new active sites and mechanisms. In this work, we propose a general theory to understand the spin coupling in electrocatalysis.
View Article and Find Full Text PDF