Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Per- and polyfluoroalkyl substances (PFAS) are related to various adverse health outcomes, and food is a common source of PFAS exposure. Dietary sources of PFAS have not been adequately explored among U.S. pregnant individuals. We examined associations of dietary factors during pregnancy with PFAS concentrations in maternal plasma and human milk in the New Hampshire Birth Cohort Study. PFAS concentrations, including perfluorohexane sulfonate (PFHxS), perfluorooctane sulfonate (PFOS), perfluorooctanoate (PFOA), perfluorononanoate (PFNA), and perfluorodecanoate (PFDA), were measured in maternal plasma collected at ∼28 gestational weeks and human milk collected at ∼6 postpartum weeks. Sociodemographic, lifestyle and reproductive factors were collected from prenatal questionnaires and diet from food frequency questionnaires at ∼28 gestational weeks. We used adaptive elastic net (AENET) to identify important dietary variables for PFAS concentrations. We used multivariable linear regression to assess associations of dietary variables selected by AENET models with PFAS concentrations. Models were adjusted for sociodemographic, lifestyle, and reproductive factors, as well as gestational week of blood sample collection (plasma PFAS), postpartum week of milk sample collection (milk PFAS), and enrollment year. A higher intake of fish/seafood, eggs, coffee, or white rice during pregnancy was associated with higher plasma or milk PFAS concentrations. For example, every 1 standard deviation (SD) servings/day increase in egg intake during pregnancy was associated with 4.4 % (95 % CI: 0.6, 8.4), 3.3 % (0.1, 6.7), and 10.3 % (5.6, 15.2) higher plasma PFOS, PFOA, and PFDA concentrations respectively. Similarly, every 1 SD servings/day increase in white rice intake during pregnancy was associated with 7.5 % (95 % CI: -0.2, 15.8) and 12.4 % (4.8, 20.5) greater milk PFOS and PFOA concentrations, respectively. Our study suggests that certain dietary factors during pregnancy may contribute to higher PFAS concentrations in maternal plasma and human milk, which could inform interventions to reduce PFAS exposure for both birthing people and offspring.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11247473PMC
http://dx.doi.org/10.1016/j.scitotenv.2024.173157DOI Listing

Publication Analysis

Top Keywords

pfas concentrations
24
human milk
16
plasma human
12
pfas
12
maternal plasma
12
pregnancy associated
12
per- polyfluoroalkyl
8
polyfluoroalkyl substances
8
milk
8
milk hampshire
8

Similar Publications

PFAS in plant-biosolids-soil systems: Distribution, fractionation, and effects on soil microbial communities.

J Hazard Mater

September 2025

Department of Environmental & Sustainable Engineering, University at Albany, State University of New York, Albany, NY 12222, United States. Electronic address:

This study examined the behavior of six U.S. Environmental Protection Agency (EPA) regulated per- and polyfluoroalkyl substances (PFAS) compounds in vegetated soils amended with Class A and Class B biosolids.

View Article and Find Full Text PDF

Trophic-level accumulation and transfer of legacy and emerging contaminants in marine biota: meta-analysis of mercury, PCBs, microplastics, PFAS, PAHs.

Mar Pollut Bull

September 2025

Florida International University, Civil and Environmental Engineering, 10555 West Flagler Street, Engineering Center, Miami, Florida 33174, USA. Electronic address:

Marine ecosystems are increasingly threatened by anthropogenic pollutants, including plastics, persistent organic pollutants, heavy metals, oil, and emerging contaminants. This meta-analysis examined the accumulation patterns of five major contaminants-mercury (Hg), polychlorinated biphenyls (PCBs), microplastics, per- and polyfluoroalkyl substances (PFAS), and polycyclic aromatic hydrocarbons (PAHs)-in relation to trophic level and lifespan across marine species. Data synthesis revealed distinct differences in bioaccumulation and biomagnification between legacy and emerging contaminants.

View Article and Find Full Text PDF

Occurrence, distribution characteristics, and potential ecological risks of perfluorinated compounds in major estuaries and adjacent offshore areas in Hainan Island.

Mar Environ Res

September 2025

Center for Eco-Environment Restoration of Hainan Province, Hainan University, Haikou, 570228, China; Hainan International Joint Research Center for Reef Ecology, School of Ecology, Hainan University, Haikou, 570228, China. Electronic address:

Per- and polyfluoroalkyl substances (PFASs) have gained attention due to their chemical stability, bioaccumulation potential, and toxicity. The ocean serves as the ultimate sink for these compounds in the global environment. With the rapid development of the Hainan Free Trade Port, environmental pollution on Hainan Island has consequently become more pronounced.

View Article and Find Full Text PDF

Prenatal exposure to per- and polyfluoroalkyl substances: Association with child behavior in the environmental influences on child health outcomes (ECHO) Cohort.

Environ Int

August 2025

Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina, Chapel Hill, NC, USA; Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina, Chapel Hill, NC, USA. Electr

Background: Prenatal exposure to per- and polyfluoroalkyl substances (PFAS) may adversely impact child neurodevelopment; however, epidemiologic findings remain inconclusive because of small sample sizes, limited exposure variability, and differing neurodevelopmental measures. We aimed to investigate the relationship between prenatal PFAS exposure and child behavior.

Methods: We pooled data from nine study sites in the nationwide Environmental influences on Child Health Outcomes (ECHO) Cohort.

View Article and Find Full Text PDF

Food contamination by per- and polyfluoroalkyl substances (PFAS), especially ultra-short-chain (USC) compounds, poses a growing concern due to their environmental persistence and potential health risks. Despite the developing regulatory framework, analytical challenges persist in quantifying polar USC-PFAS in complex content food matrices. This study presents the development and validation of a novel high-performance liquid chromatography coupled to a tandem mass spectrometer (HPLC-MS/MS) method for the accurate determination of USC-PFAS (carbon chain length from one to four, C1-C4) in tomato-based products (i.

View Article and Find Full Text PDF