98%
921
2 minutes
20
Drug-induced liver injury (DILI) is one of the major concerns during drug development. Wide acceptance of the 3 R principles and the innovation of in-vitro techniques have introduced various novel model options, among which the three-dimensional (3D) cell spheroid cultures have shown a promising prospect in DILI prediction. The present study developed a 3D quadruple cell co-culture liver spheroid model for DILI prediction via self-assembly. Induction by phorbol 12-myristate 13-acetate at the concentration of 15.42 ng/mL for 48 hours with a following 24-hour rest period was used for THP-1 cell differentiation, resulting in credible macrophagic phenotypes. HepG2 cells, PUMC-HUVEC-T1 cells, THP-1-originated macrophages, and human hepatic stellate cells were selected as the components, which exhibited adaptability in the designated spheroid culture conditions. Following establishment, the characterization demonstrated the competence of the model in long-term stability reflected by the maintenance of morphology, viability, cellular integration, and cell-cell junctions for at least six days, as well as the reliable liver-specific functions including superior albumin and urea secretion, improved drug metabolic enzyme expression and CYP3A4 activity, and the expression of MRP2, BSEP, and P-GP accompanied by the bile acid efflux transport function. In the comparative testing using 22 DILI-positive and 5 DILI-negative compounds among the novel 3D co-culture model, 3D HepG2 spheroids, and 2D HepG2 monolayers, the 3D culture method significantly enhanced the model sensitivity to compound cytotoxicity compared to the 2D form. The novel co-culture liver spheroid model exhibited higher overall predictive power with margin of safety as the classifying tool. In addition, the non-parenchymal cell components could amplify the toxicity of isoniazid in the 3D model, suggesting their potential mediating role in immune-mediated toxicity. The proof-of-concept experiments demonstrated the capability of the model in replicating drug-induced lipid dysregulation, bile acid efflux inhibition, and α-SMA upregulation, which are the key features of liver steatosis and phospholipidosis, cholestasis, and fibrosis, respectively. Overall, the novel 3D quadruple cell co-culture spheroid model is a reliable and readily available option for DILI prediction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tox.2024.153829 | DOI Listing |
Biomater Sci
September 2025
Biotechnology Science and Engineering Program, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
B cells are critical components of the adaptive immune system that proliferate and differentiate within the secondary lymphoid organs upon recognition of antigens and engagement of T cells. Traditional two-dimensional (2D) cell cultures fall short of replicating the intricate structures and dynamic evolution of three-dimensional (3D) environments found in lymphoid organs, prompting the development of more physiologically pertinent models. Our approach employs -hexanoyl glycol chitosan (HGC) coated ultra-low attachment (ULA) lattice plates to cultivate a 3D co-culture of CD40L-expressing MS5 stromal cells and naïve B cells derived from the peripheral blood mononuclear cells (PBMCs) of healthy human donors.
View Article and Find Full Text PDFJ Biophotonics
September 2025
Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, USA.
Ovarian cancer (OvCa) remains the leading cause of gynecological cancer mortality, with most patients developing chemoresistance. Drug repurposing offers promising alternatives, with mebendazole (MBZ) showing anticancer activity. This study evaluates MBZ efficacy using Spectral Domain Optical Coherence Tomography (SD-OCT).
View Article and Find Full Text PDFBiochem Biophys Rep
December 2025
Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
Breast cancer is the most prevalent cancer among women, posing significant challenges due to its heterogeneity. Recent studies suggest that the ketogenic diet (KD) may enhance chemotherapy efficacy by modulating cancer cell metabolism, particularly through the elevation of ketone bodies like β-hydroxybutyrate (BHB). This study investigates the effects of BHB on breast cancer cells using both 2D and 3D culture models, focusing on its role in developing resistance to fluorouracil (5-FU).
View Article and Find Full Text PDFAn integrated approach is proposed to rapidly evaluate the effects of anticancer treatments in 3D models, combining a droplet-based microfluidic platform for spheroid formation and single-spheroid chemotherapy application, label-free morphological analysis, and machine learning to assess treatment response. Morphological features of spheroids, such as size and color intensity, are extracted and selected using the multivariate information-based inductive causation algorithm, and used to train a neural network for spheroid classification into viability classes, derived from metabolic assays performed within the same platform as a benchmark. The model is tested on Ewing sarcoma cell lines and patient-derived xenograft (PDX) cells, demonstrating robust performance across datasets.
View Article and Find Full Text PDFACS Biomater Sci Eng
September 2025
Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
Patient-derived tumor organoids (PDTOs) are promising 3D disease models for developing personalized treatment methods. However, conventional technologies for making PDTOs have limitations such as batch-to-batch variation and low throughput. Droplet microfluidics (DM), which utilizes uniform droplets generated in microchannels, has demonstrated potential for creating organoids due to its high-throughput and controllable parameters.
View Article and Find Full Text PDF