98%
921
2 minutes
20
The subdivisions of the extended cingulate cortex of the human brain are implicated in a number of high-level behaviors and affected by a range of neuropsychiatric disorders. Its anatomy, function, and response to therapeutics are often studied using non-human animals, including the mouse. However, the similarity of human and mouse frontal cortex, including cingulate areas, is still not fully understood. Some accounts emphasize resemblances between mouse cingulate cortex and human cingulate cortex while others emphasize similarities with human granular prefrontal cortex. We use comparative neuroimaging to study the connectivity of the cingulate cortex in the mouse and human, allowing comparisons between mouse 'gold standard' tracer and imaging data, and, in addition, comparison between the mouse and the human using comparable imaging data. We find overall similarities in organization of the cingulate between species, including anterior and midcingulate areas and a retrosplenial area. However, human cingulate contains subareas with a more fine-grained organization than is apparent in the mouse and it has connections to prefrontal areas not present in the mouse. Results such as these help formally address between-species brain organization and aim to improve the translation from preclinical to human results.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11485145 | PMC |
http://dx.doi.org/10.1007/s00429-024-02773-9 | DOI Listing |
Brain
September 2025
Sorbonne University, Inserm U1127, CNRS UMR7225, UM75, Paris Brain Institute, Movement Investigation and Therapeutics Team, 75013 Paris, France.
Adolescence is frequently called the second brain maturation period. In Tourette disorder (TD), the clinical trajectory of tics and associated psychiatric co-morbidities vary significantly across individuals during the transition from adolescents to adulthood. In this study, we aimed to identify patterns of resting-state functional connectivity that differentiate adolescents with TD from their neurotypical peers, and to monitor symptom-specific functional changes over time.
View Article and Find Full Text PDFAnn Acad Med Singap
August 2025
Dementia Research Centre (Singapore), Lee Kong Chian School of Medicine, Nanyang Technology University, Singapore.
Introduction: Interpretation and analysis of magnetic resonance imaging (MRI) scans in clinical settings comprise time-consuming visual ratings and complex neuroimage processing that require trained professionals. To combat these challenges, artificial intelligence (AI) techniques can aid clinicians in interpreting brain MRI for accurate diagnosis of neurodegenerative diseases but they require extensive validation. Thus, the aim of this study was to validate the use of AI-based AQUA (Neurophet Inc.
View Article and Find Full Text PDFCereb Cortex
August 2025
Section of Brain Function Information, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan.
This study aimed to identify brain activity modulations associated with different types of visual tracking using advanced functional magnetic resonance imaging techniques developed by the Human Connectome Project (HCP) consortium. Magnetic resonance imaging data were collected from 27 healthy volunteers using a 3-T scanner. During a single run, participants either fixated on a stationary visual target (fixation block) or tracked a smoothly moving or jumping target (smooth or saccadic tracking blocks), alternating across blocks.
View Article and Find Full Text PDFEpileptic Disord
September 2025
APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France.
This case study reports the first documented use of stereoelectroencephalography (SEEG)-guided radiofrequency thermocoagulation (RFTC) to treat refractory status epilepticus (RSE). A 33-year-old woman with drug-resistant epilepsy and recurrent RSE underwent SEEG to define her epileptogenic zone. A new RSE started shortly before and continued during the SEEG exploration, being unresponsive to multiple antiseizure medications, vagal nerve stimulation, and corticosteroid therapy.
View Article and Find Full Text PDFFront Hum Neurosci
August 2025
Department of Neurosurgery, Affiliated Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
Background: Slapping automatism is a type of automatism observed during epileptic seizures, but its underlying electrophysiological mechanisms remain poorly understood. Stereo-electroencephalography (SEEG) provides a unique opportunity to investigate the associated cortical areas with epileptiform discharges during the slapping automatism.
Case Report: We report five cases of drug-resistant epilepsy in which SEEG recordings captured slapping automatism.