98%
921
2 minutes
20
Midlife metabolic syndrome (MetS) is associated with cognitive impairment in late life. The mechanism of delayed MetS-related cognitive dysfunction (MetSCD) is not clear, but it has been linked to systemic inflammation and chronic cerebral microangiopathy. Currently there is no treatment for late life MetSCD other than early risk factor modification. We investigated the effect of soluble epoxide hydrolase (sEH) inhibitor 4-[[trans-4-[[(tricyclo[3.3.1.13,7]dec-1-ylamino)carbonyl]amino]cyclohexyl]oxy]-benzoic acid (t-AUCB) on cognitive performance, cerebral blood flow (CBF), and central and peripheral inflammation in the high-fat diet (HFD) model of MetS in mice. At 6 weeks of age, male mice were randomly assigned to receive either HFD or standard chow (STD) for 6 months. Mice received either t-AUCB or vehicle for 4 weeks. Cognitive performance was evaluated, followed by CBF measurement using magnetic resonance imaging (MRI). At the end of the study, blood was collected for measurement of eicosanoids and inflammatory cytokines. The brains were then analyzed by immunohistochemistry for glial activation markers. The HFD caused a significant impairment in novel object recognition. Treatment with t-AUCB increased plasma levels of 14,15-EET, prevented this cognitive impairment and modified hippocampal glial activation and plasma cytokine levels, without affecting CBF in mice on HFD. In conclusion, sEH inhibition for four weeks prevents cognitive deficits in mice on chronic HFD by modulating inflammatory processes without affecting CBF.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11218661 | PMC |
http://dx.doi.org/10.1016/j.prostaglandins.2024.106850 | DOI Listing |
Genetic studies have linked (encoding soluble epoxide hydrolase, sEH) and (encoding cyclooxygenase-2, COX-2) to Alzheimer's disease (AD). Elevated levels of sEH and COX-2 found in AD patients and animals suggest their involvement in neurodegeneration, glial activation, vascular dysfunction, and inflammation. This study evaluated the effects of a new dual sEH/COX-2 inhibitor, PTUPB, on cerebrovascular function and cognition in TgF344-AD rats.
View Article and Find Full Text PDFChem Biol Drug Des
September 2025
Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Medchal, Telangana, India.
A novel series of triazole-linked indole derivatives was designed, synthesized, and evaluated as soluble epoxide hydrolase inhibitors (sEHIs) for their potential anticancer activity. These compounds exhibit strong binding affinity within the hydrophobic pockets of sEH, with compounds 9a and 9b emerging as the most potent inhibitors, achieving IC₅₀ values of 0.270 ± 0.
View Article and Find Full Text PDFACS Omega
August 2025
Institute of Chemistry, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, RS 91501-970, Brazil.
This review examines the role of ionic liquids (ILs) in the catalytic carbonation of epoxides for the synthesis of cyclic carbonates, focusing on the key factors that influence reaction efficiency. The nucleophilicity and basicity of the anions in IL catalysts are highlighted as critical components for promoting the cycloaddition reaction with CO. The solubility and ionicity of the ILs also significantly affect the reaction, with higher ionicity leading to better solubilization and catalytic performance.
View Article and Find Full Text PDFJ Transl Med
August 2025
School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshun South Road, Dalian, 116044, P.R. China.
Background: Macrophage immunomodulation has emerged as a novel intervention and therapeutic strategy for temporomandibular joint osteoarthritis (TMJOA), potentially serving as a key approach for reducing synovial inflammation and promoting cartilage repair. The soluble epoxide hydrolase inhibitor (sEHi), TPPU, has shown potential therapeutic effects against inflammatory diseases and osteogenesis by elevating endogenous Epoxyeicosatrienoic acids (EETs). However, it remains largely unknown whether TPPU can reduce inflammation and cartilage degradation in the TMJOA.
View Article and Find Full Text PDFACS Med Chem Lett
August 2025
Smith, Gambrell & Russell LLP, 1105 W. Peachtree Street NE, Atlanta, Georgia 30309, United States.
Provided herein are novel spiropiperidine urea-derived compounds as soluble epoxide hydrolase inhibitors, pharmaceutical compositions, use of such compounds in treating diabetic retinopathy, and processes for preparing such compounds.
View Article and Find Full Text PDF