Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Sulfide-based all-solid-state lithium batteries (ASSLBs) have attracted unprecedented attention in the past decade due to their excellent safety performance and high energy storage density. However, the sulfide solid-state electrolytes (SSEs) as the core component of ASSLBs have a certain stiffness, which inevitably leads to the formation of pores and cracks during the production process. In addition, although sulfide SSEs have high ionic conductivity, the electrolytes are unstable to lithium metal and have non-negligible electronic conductivity, which severely limits their practical applications. Herein, a grain boundary electronic insulation strategy through in situ polymer encapsulation is proposed for this purpose. A polymer layer with insulating properties is applied to the surface of the LiPSCl (LPSC) electrolyte particles by simple ball milling. In this way, we can not only achieve a dense electrolyte pellet but also improve the stability of the Li metal anode and reduce the electronic conductivity of LPSC. This strategy of electronic isolation of the grain boundaries enables stable deposition/stripping of the modified electrolyte for more than 2000 h at a current density of 0.5 mA cm in a symmetrical Li/Li cell. With this strategy, a full cell with Li(NiCoMn)O (NCM811) as the cathode shows high performance including high specific capacity, improved high-rate capability, and long-term stability. Therefore, this study presents a new strategy to achieve high-performance sulfide SSEs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c04393DOI Listing

Publication Analysis

Top Keywords

all-solid-state lithium
8
grain boundary
8
boundary electronic
8
electronic insulation
8
insulation strategy
8
strategy situ
8
situ polymer
8
polymer encapsulation
8
sulfide sses
8
electronic conductivity
8

Similar Publications

Amorphous MoS Derived from (NH)MoS: Structural Insights and Applications in All-Solid-State Batteries.

Inorg Chem

September 2025

Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-853, Japan.

Amorphous molybdenum polysulfides (a-MoS) have attracted considerable attention because of their unique physical and chemical properties, which enable their use in a wide range of applications including energy-storage materials. Among various synthesis methods, thermal decomposition provides an effective route for synthesizing a-MoS. In particular, amorphous molybdenum trisulfide (a-MoS) prepared via thermal decomposition has emerged as a promising active material for energy-storage applications owing to its unique structural and electrochemical characteristics.

View Article and Find Full Text PDF

Anode-free sulfide-based all-solid-state lithium metal batteries (ASSLMBs), which eliminate the need for a lithium metal anode during fabrication, offer superior energy density, enhanced safety, and simplified manufacturing. Their performance is largely influenced by the interfacial properties of the current collectors. Although previous studies have investigated the degradation of sulfide electrolytes on commonly used copper (Cu) and stainless steel (SS) current collectors, the impact of spontaneously formed surface oxides, such as copper oxide (CuO/CuO) and chromium oxide (CrO), on interfacial stability remains underexplored.

View Article and Find Full Text PDF

Self-Medicating Molten-Salt Synthesis of Bulk-Stabilized High-Energy Cathodes for Li-Ion Batteries.

Angew Chem Int Ed Engl

September 2025

Department of Chemical Engineering, Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.

High-energy lithium-ion batteries necessitate stable Ni-rich layered cathodes, yet critical challenges such as lattice distortion and surface structure collapse remain unresolved. While conventional high-valence doping greatly alleviates surface degradations, it is ineffective in stabilizing bulk lattice due to dopant segregation. Here, we propose a slightly Li-rich (SLR) lattice design by partially substituting transition-metal (TM) ions with Li ions in TM layers, reducing electrostatic repulsion against high-valence dopants.

View Article and Find Full Text PDF

All-solid-state Li-metal batteries using solid polymer electrolytes (SPEs) in combination with high-voltage cathodes such as lithium nickel manganese cobalt oxide (NMC) promise enhanced battery safety, energy density, and flexibility. However, understanding the oxidative decomposition of SPEs on the cathode surfaces and characterizing the resulting cathode-electrolyte interphase (CEI) remain challenging both experimentally and computationally. This study introduces a new computational protocol based on ab initio molecular dynamics for simulating the decomposition of PEO:LiTFSI SPE on the NMC-811 cathode surface using a combined electron- and Li+-removal simulation approach.

View Article and Find Full Text PDF

In Situ Nanoscale Probing of Lithium-Aluminum Alloying / De-Alloying Kinetics and Mechanical Failure in All-Solid-State Batteries.

Angew Chem Int Ed Engl

September 2025

Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.

Alloy anodes with high specific capacity are extensively utilized in all-solid-state batteries (ASSBs). However, they are challenged by interfacial kinetic and mechanical issues. Real-time investigation of interfacial failure mechanisms at the nanoscale is crucial for optimizing the alloy anodes.

View Article and Find Full Text PDF