Wavefront distortion correction in scanning tunneling microscope image.

Rev Sci Instrum

Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.

Published: May 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We report an algorithm to identify and correct distorted wavefronts in atomic resolution scanning tunneling microscope images. This algorithm can be used to correct nonlinear in-plane distortions without prior knowledge of the physical scanning parameters, the characteristics of the piezoelectric actuator, or individual atom positions. The 2D image is first defined as a sum of sinusoidal plane waves, where a nonlinear distortion renders a curve for an otherwise ideal linear wavefront. Using the Fourier transforms of local areas of the image, the algorithm generates a wavefront vector field. The identified wavefronts are subsequently linearized for each plane wave without changing lattice orders, giving rise to distortion corrections. Our algorithm is complementary to conventional post-processing algorithms that require prior detection of real space features, which can also be used to correct nonlinear distortions in 2D images acquired by other microscopy techniques.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0191523DOI Listing

Publication Analysis

Top Keywords

scanning tunneling
8
tunneling microscope
8
correct nonlinear
8
wavefront distortion
4
distortion correction
4
correction scanning
4
microscope image
4
image report
4
algorithm
4
report algorithm
4

Similar Publications

Reversible Manipulations of Triangular-Shaped Mirror Twin Boundary Loops in Ultrathin NiTe.

Nano Lett

September 2025

School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China.

High-density mirror twin boundaries (MTBs) embedded in two-dimensional (2D) transition metal dichalcogenides (TMDCs) have emerged as fascinating platforms for exploring charge density wave and Tomonaga-Luttinger liquid-related issues. However, the reversible manipulation of high-density MTBs in 2D TMDCs remains challenging. Herein, we report the first fabrication of high-density MTB loops in ultrathin 1T-NiTe on the SrTiO(001) substrate, by postannealing as-grown 1T-NiTe under Te-deficient conditions.

View Article and Find Full Text PDF

Purpose: Modifying interference screw composition may ensure better osteoconductive properties in order to reduce tunnel enlargement after anterior cruciate ligament (ACL) reconstruction. The primary and secondary purposes were to evaluate tunnel and screw volume changes in poly-L-lactide acid (PLLA) and poly-D-lactic acid + hydroxyapatite + β-tricalcium phosphate (PLDLA+) screws. The tertiary purpose was to compare patient reported- and functional outcomes between PLLA and PLDLA+ group.

View Article and Find Full Text PDF

Using angle-resolved photoemission spectroscopy (ARPES) with spin resolution, scanning tunneling microscopy/spectroscopy (STM/STS) and density functional theory (DFT) methods, we study the electronic structure of graphene-covered and bare Au/Co(0001) systems and reveal intriguing features, arising from the ferrimagnetic order in graphene and the underlying gold monolayer. In particular, a spin-polarized Dirac-cone-like state, intrinsically related to the induced magnetization of Au, was discovered at point. We have obtained a good agreement between experiment and theory for bare and graphene-covered Au/Co(0001) and have proven that both Au ferrimagnetism and the Dirac-cone-like band are intimately linked to the triangular loop dislocations present at the Au/Co interface.

View Article and Find Full Text PDF

Precise control of spin states and spin-spin interactions in atomic-scale magnetic structures is crucial for spin-based quantum technologies. A promising architecture is molecular spin systems, which offer chemical tunability and scalability for larger structures. An essential component, in addition to the qubits themselves, is switchable qubit-qubit interactions that can be individually addressed.

View Article and Find Full Text PDF

Topological Wigner Molecule Crystal in Transition-Metal Dichalcogenide Moiré Superlattices.

ACS Nano

September 2025

Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.

As a versatile platform for exploring exotic quantum phases, moiré superlattices, ranging from twisted graphene to twisted transition metal dichalcogenides, have been intensively studied. In this work, based on exact diagonalization and Hartree-Fock mean-field calculations, the interaction-driven topological phases are investigated in hole-doped twisted bilayer MoS at the high filling factor = 3. Besides the nematic insulator and quantum anomalous Hall phases, the topological Wigner molecule crystal (TWMC) phase is found in the phase diagram.

View Article and Find Full Text PDF