98%
921
2 minutes
20
Understanding phenology, its genetics and agronomic consequences, is critical for crop adaptation. Here we aim to (i) characterize lentil response to photoperiod with a focus on five loci: the lentil ELF3 orthologue Sn, two loci linked to clusters of lentil FT orthologues, and two loci without candidates in chromosomes 2 and 5 (Experiment 1: 36 lines, short and long days in a phytotron), and (ii) establish the phenology-yield relationship (Experiment 2: 25 lines, 11 field environments). A vintage perspective, where we quantify time trends in phenotype over three decades of breeding, links both experiments. Yield increased linearly from older to newer varieties at 29 kg ha-1 year-1 or 1.5% year-1, correlated negatively with flowering time in both winter- and summer-rainfall regimes, and decoupled from biomass in favourable environments. Time to flowering shortened from older to newer varieties at -0.56% year-1 in the field, and -0.42% year-1 (short days) and -0.99% year-1 (long days) in the phytotron. Early-flowering lines of diverse origin carried multiple early alleles for the five loci, indicating that at least some of these loci affect phenology additively. Current germplasm primarily features the early-flowering haplotype for an FTb cluster region, hence the potential to increase phenological diversity with yield implications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jxb/erae203 | DOI Listing |
J Biomed Sci
September 2025
Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
Background: PPM1D (protein phosphatase Mg⁺/Mn⁺ dependent 1D) is a Ser/Thr phosphatase that negatively regulates p53 and functions as an oncogenic driver. Its gene amplification and overexpression are frequently observed in various malignancies and disruption of PPM1D degradation has also been reported as a cause of cancer progression. However, the precise mechanisms regulating PPM1D stability remain to be elucidated.
View Article and Find Full Text PDFCancer Sci
September 2025
Section of Oncopathology and Morphological Pathology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.
Low-density lipoprotein receptor-related protein 11 (LRP11) is reported to be overexpressed in various cancers; however, its functional role in lung adenocarcinoma remains poorly understood. This study aimed to elucidate the tumor-promoting function of LRP11 in lung adenocarcinoma. We assessed the expression and function of LRP11 in lung adenocarcinoma cell lines through both silencing and overexpression experiments.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
Organisms often face multiple selective pressures simultaneously (e.g., mine tailings with multiple heavy metal contaminants), yet we know little about when adaptation to one stressor provides cross-tolerance or cross-intolerance to other stressors.
View Article and Find Full Text PDFInflamm Res
September 2025
Department of General Surgery, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Chaoyang District, Beijing, 100029, China.
Background: The roles of long non-coding RNAs (lncRNAs) in the progression of various human tumors have been extensively studied. However, their specific mechanisms and therapeutic potential in Triple-Negative Breast Cancer (TNBC) remain to be fully elucidated.
Materials And Methods: The qRT-PCR assay was utilized to assess the relative mRNA levels of TFAP2A-AS1, PHGDH, and miR-6892.
J Pharm Pharmacol
September 2025
Department of Clinical Pharmacy, Hebei Medical University Third Hospital. No. 139 Ziqiang Road, Qiaoxi District, Shijiazhuang 050051, China.
Objectives: To investigate the antitumor effects of aucubin (AC) in non-small cell lung cancer (NSCLC) and uncover its plausible mechanism against lung cancer stem-like cells (LCSCs).
Methods: In vitro experiments included MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a reagent commonly used for cell viability assay) and colony formation assays to assess anti-proliferative effects on A549 and NCI-H1975 lung cancer cell lines, wound healing and Transwell invasion assays to evaluate inhibition of cell migration and invasion, tumorsphere-formation experiments to detect changes in NSCLC cell stemness, as well as Western blot and quantitative reverse transcription polymerase chain reaction (qRT-PCR) analyses to measure the expression of LCSC markers (CD44, CD133, Oct4, and Nanog). In vivo experiments were conducted to observe the impact of AC on NSCLC metastasis and mouse survival rates.