98%
921
2 minutes
20
Individuals with suspected rare genetic disorders often undergo multiple clinical evaluations, imaging studies, laboratory tests and genetic tests, to find a possible answer over a prolonged period of time. Addressing this "diagnostic odyssey" thus has substantial clinical, psychosocial, and economic benefits. Many rare genetic diseases have distinctive facial features, which can be used by artificial intelligence algorithms to facilitate clinical diagnosis, in prioritizing candidate diseases to be further examined by lab tests or genetic assays, or in helping the phenotype-driven reinterpretation of genome/exome sequencing data. Existing methods using frontal facial photos were built on conventional Convolutional Neural Networks (CNNs), rely exclusively on facial images, and cannot capture non-facial phenotypic traits and demographic information essential for guiding accurate diagnoses. Here we introduce GestaltMML, a multimodal machine learning (MML) approach solely based on the Transformer architecture. It integrates facial images, demographic information (age, sex, ethnicity), and clinical notes (optionally, a list of Human Phenotype Ontology terms) to improve prediction accuracy. Furthermore, we also evaluated GestaltMML on a diverse range of datasets, including 528 diseases from the GestaltMatcher Database, several in-house datasets of Beckwith-Wiedemann syndrome (BWS, over-growth syndrome with distinct facial features), Sotos syndrome (overgrowth syndrome with overlapping features with BWS), NAA10-related neurodevelopmental syndrome, Cornelia de Lange syndrome (multiple malformation syndrome), and KBG syndrome (multiple malformation syndrome). Our results suggest that GestaltMML effectively incorporates multiple modalities of data, greatly narrowing candidate genetic diagnoses of rare diseases and may facilitate the reinterpretation of genome/exome sequencing data.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11071539 | PMC |
Neuro Endocrinol Lett
September 2025
Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, China.
Background: Pheochromocytomas and paragangliomas (PPGLs) are rare catecholamine-secreting neuroendocrine tumors originating from the embryonic neural crest. Approximately 30% of PPGLs are hereditary and are frequently associated with genetic syndromes, including neurofibromatosis type 1 (NF1). Composite PPGLs, which include components of both PPGLs and related tumors such as ganglioneuromas, are extremely rare in NF1 patients.
View Article and Find Full Text PDFNeurol Neuroimmunol Neuroinflamm
November 2025
Department of Neurology, UC Davis Medical Center, Sacramento, CA.
Objectives: Complement factor I (CFI) deficiency is a rare condition that can present with fulminant relapsing CNS autoinflammation. In this report, we highlight the utility of genetic testing in unexplained CNS autoinflammation.
Methods: This case report describes a young adult with partial CFI deficiency, presenting with acute hemorrhagic leukoencephalitis and longitudinally extensive transverse myelitis.
JCO Precis Oncol
September 2025
Division of Hematology and Oncology, University of California Los Angeles, Los Angeles, CA.
Purpose: mutations are classically seen in non-small cell lung cancers (NSCLCs), and EGFR-directed inhibitors have changed the therapeutic landscape in patients with -mutated NSCLC. The real-world prevalence of -mutated ovarian cancers has not been previously described. We aim to determine the prevalence of pathogenic or likely pathogenic mutations in ovarian cancer and describe a case of -mutated metastatic ovarian cancer with a durable response to osimertinib, an EGFR-directed targeted therapy.
View Article and Find Full Text PDFPLoS Comput Biol
September 2025
Division of Applied Mathematics, Brown University, Providence, Rhode Island, United States of America.
Gaucher Disease (GD) is a rare genetic disorder characterized by a deficiency in the enzyme glucocerebrosidase, leading to the accumulation of glucosylceramide in various cells, including red blood cells (RBCs). This accumulation results in altered biomechanical properties and rheological behavior of RBCs, which may play an important role in blood rheology and the development of bone infarcts, avascular necrosis (AVN) and other bone diseases associated with GD. In this study, dissipative particle dynamics (DPD) simulations are employed to investigate the biomechanics and rheology of blood and RBCs in GD under various flow conditions.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America.
Fatal infections with the rare COUG strain of the zoonotic parasite Toxoplasma gondii were recently detected for the first time in four southern sea otters (Enhydra lutris nereis) exhibiting severe protozoal steatitis. The objectives of this study were to describe new COUG strain infections in sea otters, investigate the potential contributory role of a recently discovered parasite-infecting narnavirus (Apocryptovirus odysseus) in these infections, assess the potential contribution of vitamin E deficiency in the development of systemic steatitis, and explore the utility of serotyping for strain-specific diagnosis of T. gondii infections in sea otters.
View Article and Find Full Text PDF